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Scalable Hardware Accelerator for Comparing DNA
and Protein Sequences

Philippe Faes, Bram Minnaert, Mark Christiaens, Eric Bonnet, Yvan Saeys, Dirk Stroobandt, Yves Van de Peer

Abstract— Comparing genetic sequences is a well-known prob-
lem in bioinformatics. Newly determined sequences are being
compared to known sequences stored in databases in order to
investigate biological functions. In recent years the number of
available sequences has increased exponentially. Becauseof this
explosion a speedup in the comparison process is highly required.
To meet this demand we implemented a dynamic programming
algorithm for sequence alignment on reconfigurable hardware.
The algorithm we implemented, Smith-Waterman-Gotoh (SWG)
has not been implemented in hardware before. We show a
speedup factor of 40 in a design that scales well with the size
of the available hardware. We also demonstrate the limits of
larger hardware for small problems, and project our design on
the largest Field Programmable Gate Array (FPGA) available
today.

I. I NTRODUCTION

In this paper we present a scalable accelerator for comparing
protein sequences. Comparing protein sequences is a very
computationally expensive operation that is often performed
in the field of bioinformatics. A typical operation would
be to compare one newly determined sequence with each
sequence in a database, and calculate their similarities. One
such database, the NCBI protein database [1], contains almost
3 million protein sequences with lengths ranging from 6 to
36805 amino-acids. The computational complexity of one
comparison is of the orderO(N1N2), the product of the length
of the two sequences.

An algorithm that is often used for comparing sequences
is the Smith-Waterman[2] algorithm, which was extended by
Gotoh[3]. Our implementation of this Smith-Waterman-Gotoh
(SWG) algorithm can compare two sequences of length 1024
in 50 ms on a modern desktop computer. We have been able
to accelerate this operation with a factor 40, using a FPGA.

Previous hardware solutions [4], [5] simplify the Smith-
Waterman algorithm by setting many of the parameters to a
fixed value, by only allowing DNA comparisons, and by not
implementing the Gotoh extension. We put only very weak
restrictions on the length of the protein sequences, support the
Gotoh extension and provide the full flexibility of arbitrary
substitution matrices and insertion penalties.

Even with the current FPGAs, we can accelerate the algo-
rithm by a factor 40.

We demonstrate the scalability by projecting our design onto
an FPGA which is seven times bigger than the FPGA we used
for our initial development.

II. PROTEIN COMPARISON

In this section we will present the basic principles of protein
comparison, the Smith-Waterman algorithm and its extension

presented by Gotoh.

A. Alignment

A well known problem in bioinformatics is the compar-
ison of Desoxyribonucleic Acid (DNA) sequences and of
protein sequences. The former are represented by strings of
nucleotides, where possible nucleotides are A, C, G, and T,
an alphabet of four symbols. The latter are represented by a
string of amino-acids. The 20 possible amino-acids are also
represented by roman capital letters, forming an alphabet of
20 symbols. We will focus on comparing protein sequences,
but the algorithm and the acceleration we describe is identical
when comparing DNA sequences. The calculation for DNA
sequences is considerably easier, because of the shorter alpha-
bet.

Comparing genetic sequences is based on the properties of
mutations. Over time a sequence mutates and three elementary
mutation operations are considered: nucleotides or amino acids
can be inserted, deleted or substituted.

Mutations can be visualized by analignment. For example
a possible alignment between the protein sequencesAGTTAT
andTTATATTT is

--AG-TTAT
| || |

TTATATT-T.

The edit distance1 of an alignment expresses the similarity
of the two sequences. It is calculated as the sum of the
matching scores of individual characters (positive for matches
and usually negative for substitutions) and the penalties of the
gaps. For the above example the edit distance is

M(A,A) + M(G,T) + 3M(T,T) − 2G(1) − G(2), (1)

with M the so-calledsubstitution matrix, which contains
the matching scores and mismatch penalties andG, the gap
penalty function.

B. Smith-Waterman Algorithm

The Smith-Waterman algorithm [2] uses dynamic program-
ming to find theoptimal, local alignment. This is the align-
ment of two subsequences which produces the maximum edit

1This is a misnomer in existing literature: the value we calculate does
not have the axiomatic properties of a “distance”. A better term would be
similarity, since higher values represent better matches. We will stick with
the conventional termdistance.
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distance. The algorithm is based on a linear gap penalty
(G(n) = γn). A possible local alignment of the previous two
protein sequences is

AG-TTAT
| || |
ATATT-T,

another local alignment is

AGTTAT
| |||
A--TTT.

Two genetic sequencess1 and s2 with characterssj

1|2

(j = 1..N1|2), the gap penalty functionG(n) = γn and a
substitution matrixM are given. T. F. Smith and M. S. Wa-
terman showed that the optimal local alignment can be found
by constructing four matrices:B (Best), H (Horizontal), V
(Vertical) andD (Diagonal). In the first phase of the algorithm,
these matrices are constructed by initializing these values for
i = 1..N1 andj = 1..N2:

B(0, 0) = 0, (2)

B(i, 0) = 0, (3)

B(0, j) = 0, (4)

and recursively calculating the other values:

D(i, j) = B(i − 1, j − 1) + M(si
1
, s

j
2
), (5)

H(i, j) = B(i, j − 1) − γ (6)

V (i, j) = B(i − 1, j) − γ (7)

B(i, j) = max(D(i, j), H(i, j), V (i, j), 0). (8)

We can calculateB(i, j) without referencingD, H or V

by substituting formulae 5, 6 and 7 into formula 8:

B(i, j) = max (B(i − 1, j − 1) + M(si
1
, s

j
2
),

B(i, j − 1) − γ,

B(i − 1, j) − γ,

0) (9)

The highest element in theB matrix is the comparison
distance of the two sequences,C(s1, s2). The position of
this element denotes the position of the end of the two
subsequences.

The second phase of the algorithm is the trace-back phase.
Assuming thatB(i∗, j∗) contains the highest element of
the B matrix we search the maximum values ofD(i∗, j∗),
H(i∗, j∗) andV (i∗, j∗) as in Eq. 8. Then we move diagonally,
horizontally or vertically respectively until we meet a value0
which indicates the start of the subsequences.

To clarify we present theB matrix in Fig. 1 for the running
example, withγ = 1, M(i, i) = 3 and M(i, j) = −1 for
i 6= j. It is clear that the value of each elementB(n, m) can
be calculated as soon as the values forB(i, j) for i < n and
j < m have been calculated.
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Fig. 1. B Matrix for the alignment ofAGTTAT andTTATATTT.

C. Adaptation

A common use-case for the Smith-Waterman algorithm is
to compare one (or more) sequences to all sequences in a large
database, in order to find a small number of close matches.
Later, a more detailed comparison can be performed on these
matches. When this strategy is taken, we are not interested in
the exact alignment, but merely in the edit cost.

Since we will not perform a back-track phase, the values of
the D, H and V matrices need not be stored. We only need
to store one row of theB matrix if we calculate its values in
a row-by-row fashion. We store the preliminarybestresult in
a separate variable, and update whenever a higher value in the
B matrix is calculated. This greatly improves the scalability of
the algorithm, since the memory requirements are no longer
O(N1 · N2), but O(N1). Since C(s1, s2) = C(s2, s1), we
can change the order of the sequences when one sequence is
longer than the other. This allows us to reduce that the memory
requirements toO(min(N1, N2)).

D. Gotoh Extension

Gotoh [3] proposed a modification to the Smith-Waterman
algorithm to support gap penalties of the formG(n) = ω +
(n − 1)ǫ. We refer to the original paper for the details and
suffice by stating that two more subtractions and two more
max-operations are required for calculating an element of the
B matrix. We have implemented full support for the Gotoh
extension, even though it increases the requirements on the
hardware. To our knowledge, no other hardware accelerators
have been presented for the Smith-Waterman-Gotoh algorithm,
or any other algorithm with the Gotoh extension.

III. H ARDWARE IMPLEMENTATION

A. Overview

The core of our implementation consists of a scalable
pipeline, a controller and some memories (Fig. 2). The nodes
of the pipeline are used for evaluating Eq. 9 in a massively
parallel way. Each node can evaluate the equation, and pass
the result to the next node. The final node writes its results to
a scratch-pad memory, so that is can later be retrieved by the
first node. The pipeline is connected with the memories that
contain theprotein sequences. Each node has its own copy of
the substitution matrix, so that we do not need a large global
interconnection between each node and a central multi-port
memory. Finally, each node is a four-stage pipeline in itself.

https://www.researchgate.net/publication/16031839_An_improved_algorithm_for_matching_biological_sequences?el=1_x_8&enrichId=rgreq-bb9f0b33f13b1a79f076994d0c98c8cb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MDAzMTtBUzo5OTI2MzcxNTQ3OTU2NkAxNDAwNjc3NzIyODE0
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Fig. 2. Architecture of the Hardware
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Fig. 3. Calculate Elements ofB with a Large Pipeline

We will now explain the basic parts of our SWG implemen-
tation, and how they are controlled by the controller in more
detail.

B. Pipeline and Scratch-pad Memory

For executing the Smith-Waterman algorithm, one column
of the B matrix will be processed by a single node of the
pipeline over a period ofN1 clock cycles. The resulting score
will be passed on to the next node of the pipeline. Should
we have enough cells in the pipeline, we could execute the
algorithm by having each column calculated by one node, as
depicted in Fig. 3.

In order to calculateB(i, j), a node needs to know the
values ofB(i, j−1), B(i−1, j−1) andB(i−1, j). This means,
for a given timestepn, each node needs the value it calculated
at timen−1 and the values its predecessor calculated at times
n− 1 and atn− 2. All these values are stored and transferred
in the pipeline as needed.

Because we want to support sequences larger than the size
of the pipeline, we introduce a scratch-pad memory. The last
node of the pipeline cannot pass its data to a successor node,
but rather stores its results in a memory. The data in the
memory are fed to the first node of the pipeline when the
next set of columns are processed.

The size of the sequences is only limited by the memory
available on the FPGA. Our current implementation allows
two sequences of 1024 amino-acids, and uses only 35% of
the available memory on the FPGA, most of which is used
for duplicating the substitution matrix in each node of the
pipeline. We are confident that we can easily adapt our design
for much longer sequences (at least up to 16384). Moreover,

� �

�

�

�

�

�

�

�

����� �����

�

�

�

�

�

� �

�

�

�

����� �����

Fig. 4. Calculate Elements ofB with a Pipeline and Scratch-pad Memory

the design can be adapted so that one of both sequences is
streamed through the pipeline, and thus can be of arbitrary
length. Only the size of the scratch-pad memory limits the
size of one of both sequences. Since the size of this memory
is directly proportional to the maximum value ofN1, we feel
our design can scale very well to larger protein sequences.

C. Access to Substitution Matrix

In our implementation each cell of the pipeline processes
an element of the dynamic programming arrayB in one
clock cycle, and then moves to the element below the current.
Calculating one element requires evaluating Eq. 9.2 This
includes a memory lookup ofM(si

1
, s

j
2
). In order to avoid

complex interconnections between one central copy ofM and
all the cells of the pipeline, we place a copy ofM in each cell.
This increases memory requirements, but not to the extent that
memory becomes a bottleneck. Our largest design uses almost
all of the FPGA’s logic elements, but only 35% of the available
memory.

Before starting an alignment operation, we load the substi-
tution matrix into the local memories by piping the values into
the pipeline. This again facilitates the data interconnection and
scalability, because each cell only has to communicate withthe
previous and the next cell in the pipeline.

D. Elements ofs1 and s2

Passing the elements of a protein sequence to each node of
the pipeline independently would cause non-scalable intercon-
nections. We take advantage of the predictable nature of the
pipeline. If a certain element ofs1 is used by a node, the same
element will be used by the successor of that node in the next
timestep. This means we can pipe the elements ofs1 into the
pipeline at node0. Every node will pass the element ofs1 on
to the next node.

The elements ofs2 are somewhat more complicated. Every
node will use the same element ofs2 for a certain period of
time before it moves on to another column in theB matrix.
However, the neighbouring nodes will never need the same
element ofs2. This means we must pass the element directly
to each node when the node needs it, i.e. when the node is at
the first row of a new column. We notice that no two nodes
can ever start a new column at the same time, so we can

2Remember we are ignoring the Gotoh extension for the sake of clarity.
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Fig. 5. Passing elements to the pipeline

time-multiplex a single interconnection channel for passing
the elements ofs2 (Fig. 5). Whenever a node starts a new
column, it will find the correct elements2 on thiss2-channel.
The node stores the element until it has finished its column.
If no node starts a new column, thes2-channel is unused.

E. Pipelining

The operations performed in one node are:
1) calculate the memory address whereM(si

1
, s

j
2
) can be

loaded from the local memory,
2) loadM(si

1
, s

j
2
) from memory,

3) calculateB(i, j) using Eq. 9,
4) check ifB(i, j) is a new maximum, if so set maximum

to B(i, j).
The results of these operations are passed on to the next node.
Because the operations enumerated here are rather complex,
they cannot be executed in a single clock cycle on an FPGA.
We have constructed each node as a four-step pipeline. This
does not degrade the over-all throughput, because each node
can still finish one operation per clock cycle. It only means
that four matrix elements will be in the pipeline of a single
cell at the same time. When we revise Figures 3 and 4, we
should think of the highlighted elements as those elements that
are in the final stage of the pipeline of the indicated node. The
other stages are already filled with elements that will come to
the final stage in the next clock cycles.

F. Related work

Systolic arrays, somewhat similar to our pipeline, have been
proposed for sequence matching by [5]. The original imple-
mentation, however requires that the length of the systolic
array is twice the length of the largest sequence. Since protein
sequences with thousands of amino-acids are known today, this
requirement is not feasible on current FPGAs. Other authors
[4] have proposed a systolic array that can compare a sequence
of arbitrary length to a sequence of a fixed length (in casu
38). This is too large a restriction for most bioinformatics
queries. By contrast, our current implementation can align
two sequences of length 1024, and can easily be scaled to
accommodate larger sequences.

G. Communication between Java and FPGA

We have developed a hardware accelerator using a trans-
parent interface[6], [7] between the high level control (pro-
grammed in Java[8]) and the actual FPGA. First we developed
a pure Java application for protein alignments, based on [9].
We determined which Java method takes up most computation
time and developed a hardware accelerator for this method.

When we execute the unmodified Java program on our
adapted Java Virtual Machine (JVM), the JVM will automati-
cally intercept the alignment method. Instead of executingthis
method on the main processor, it has the alignment executed on
the FPGA. All subsequent communication between the main
processor and the FPGA is handled by the JVM.

The use of a transparent interface leaves the choice of
hardware to the JVM, so that the programmer can concentrate
on the algorithm. The transparent interface is also robust
to multi-threading. It will be possible to fork different Java
threads that each invoke one FPGA. Moreover, when a thread
waits for an FPGA to finish its work, the Central Processing
Unit (CPU) becomes available for a different Java thread. Our
design has the potential of scaling well with multiple FPGAs
and with multiple CPUs.

IV. SIMULATED SPEED-UP

We have simulated the computation of an alignment of two
proteins of size 1024, for various pipeline sizes. Recall that
the software implementation takes 50ms to execute. As can
be seen from Fig. 6, the initial speedup is proportional to the
amount of added hardware. For larger pipelines, the speedup
decreases for two reasons.

Firstly, since the computation time decreases, the commu-
nication overhead can no longer be ignored. The minimal
time required, for infinitely fast hardware is the time to
copy the data to the FPGA over the PCI bus. This problem
can be reduced by copying the substitution matrix and the
query sequence3 only once so that only the sequences from a
database need to be copied over the bus. The bus can also be
used more efficiently by using Direct Memory Access (DMA)
transactions. Theoretically DMA burst transaction can reach a
throughput of 133MB/s, while our current PCI bus simulation
allows for a throughput of 6MB/s. We could theoretically ac-
celerate the communication by a factor of up to 22. Fig. 6 also
shows the execution times without communication overhead.

Secondly, when the size of the pipeline approaches the size
of the protein sequence, the pipeline cannot be used optimally.
The pipeline will be filled with bubbles (nodes that do no
useful calculations) and it will delay the computation. This is
demonstrated more clearly in Fig. 7 , where we align a protein
of size 70 with one of size 112.

These results show that it may be useful todownscalethe
hardware when expecting many short alignments. Since we
use an FPGA, it is feasible to reconfigure the hardware at run
time, so that the hardware can be adapted to the expected use.

V. SYNTHESIS RESULTS AND MEASUREDSPEED-UPS

We have synthesized our design for the Altera Stratix 1s25
FPGA of our target system. The largest feasible design has
a systolic array of 59 nodes. The highest possible clock
frequencies range from 62.12 MHz for an array of one single
node to 49.49 MHz for the array of 59 nodes. This confirms
our claim that the clock frequency does not degrade when
scaling the design up to larger systolic arrays.

3The query sequence is the sequence that is held constant while scanning
over an entire database.
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If the FPGA were to operate at its maximum frequency,
instead of the fixed frequency of the PCI bus, the execution
times would be as depicted in Fig. 8. Because the clock
frequency is relatively stable, the same trends can be detected
as in Fig. 6, although the clock frequency introduces a lot of
noise in the graph.

We have verified the simulation results on a desktop PC
with an AMD Athlon MP 2600+ processor, and extended with
an Stratix 1s25 FPGA on an Altera PCI Development Board,
Stratix edition. The results of the simulation, and the actual
execution on the JVM with the FPGA are summarized in
Table I. The actual measured results are slightly faster than the
predicted simulation results. The difference can be explained
because, even though some execution time is spent in software,
the actual PCI bus arbitration is not identical to the simulated
bus.

TABLE I

EXECUTION TIME FOR ALIGNMENT OF TWO SEQUENCES OF LENGTH1024

execution time (ms) software 1 node 59 nodes

simulated, at 33 MHz N.A. 32.32 1.413
simulated, at max clock freq. N.A. 17.61 0.86
measured, FPGA at 33 MHz 50.07 32.15 1.28

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  10  20  30  40  50  60

tim
e 

(m
s)

#nodes

execution time

Fig. 8. Execution times at maximum clock frequency

VI. PROJECTED RESULTS

We synthesized our design for the largest FPGA available
from Altera, the Stratix II 180 (EP2S180F1508C5) chip. We
were able to fit a pipeline of 350 nodes into a single chip.
The clock frequency ranges from 70.05 MHz for a design
with only one node to 42.84 MHz for the design with 350
nodes. This is an acceptable variation in clock frequency over
such a wide range of designs. It confirms again the benefit of
local interconnections, with a very limited amount of global
interconnections. We can conclude that our design can be
scaled up to fit the largest FPGAs known today.
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