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ABSTRACT
Motivation: Most non-coding RNAs are characterized by a
specific secondary and tertiary structure that determines their
function. Here, we investigate the folding energy of the sec-
ondary structure of non-coding RNA sequences, such as
microRNA precursors, transfer RNAs and ribosomal RNAs in
several eukaryotic taxa. Statistical biases are assessed by
a randomization test, in which the predicted minimum free
energy of folding is compared with values obtained for struc-
tures inferred from randomly shuffling the original sequences.
Results: In contrast with transfer RNAs and ribosomal
RNAs, the majority of the microRNA sequences clearly
exhibit a folding free energy that is considerably lower than
that for shuffled sequences, indicating a high tendency in the
sequence towards a stable secondary structure. A possible
usage of this statistical test in the framework of the detection
of genuine miRNA sequences is discussed.
Availability: The dataset, software and additional data files
are freely available as supplementary information on our
Website.
Contact: yves.vandepeer@psb.ugent.be
Supplementary information: http://www.psb.ugent.be/
bioinformatics/

INTRODUCTION
It is generally accepted that the functional activity of many
RNA molecules is determined by their specific secondary
(and tertiary) structure, which is, in turn, determined by
Watson–Crick, wobble and other non-canonical base pairings.
As a consequence, the stability of an RNA with a specific sec-
ondary structure and involved in functional processes in the
cell is expected to be higher than that of RNAs which do not
have such a structure, or for which the secondary structure
is of less functional importance. Starting from this hypo-
thesis, Maizel and co-workers (Le et al., 1988, 1989; Chen

∗To whom correspondence should be addressed.

et al., 1990) proposed assessing thermodynamic stability and
statistical significance of secondary structure features using
a method that combines minimum free energy (MFE) values
and Monte Carlo simulations. Following this pioneer work,
several authors have tried to find significant secondary struc-
tures in messenger RNAs (Seffens and Digby, 1999; Workman
and Krogh, 1999; Katz and Burge, 2003). For other classes of
RNA sequences, Rivas and Eddy (2000) demonstrated that,
for most of the non-coding RNAs examined, the stability of
the secondary structure was not sufficiently different from the
predicted stability of a random sequence to be useful as a
general gene-finding approach.

MicroRNAs (miRNAs) are a class of small regulatory non-
coding RNAs that have generated much excitement recently
(Eddy, 2001; Bartel and Bartel, 2003; Carrington and Ambros,
2003). Analysis of miRNAs is leading to new paradigms for
control of gene expression during development in plants and
animals. MiRNAs arise from larger precursor molecules that
can fold into a stable stem–loop structure (Lee et al., 1993;
Lagos-Quintana et al., 2001; Lau et al., 2001; Llave et al.,
2002; Reinhart et al., 2002). Those structures are processed
by ribonuclease III-like nuclease (Dicer in animals and Dicer-
like in plants (Hutvagner and Zamore, 2002; Schauer et al.,
2002) and all have a typical stem–loop shape (Lee et al., 1993;
Reinhart et al., 2000, 2002; Lagos-Quintana et al., 2001; Lau
et al., 2001; Llave et al., 2002).

Here, we present a study on the MFE values of secondary
structures in miRNAs and other non-coding RNAs. Original
MFE values of the secondary structure are compared with
values obtained by randomly shuffling the original sequences.

MATERIALS AND METHODS

Non-coding RNA sequences
A total of 506 miRNA precursor sequences were downloaded
from the RFAM database (Ambros et al., 2003; Griffiths-Jones
et al., 2003; Griffiths-Jones, 2004). The available sequences
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Table 1. Basic statistic values for the sequences used in the study

%A %T %G %C Count Length %GC % Paired bases MFE

tRNA
A.thaliana 20 ± 3 24 ± 3 32 ± 3 24 ± 3 125 75 ± 5 55 ± 4 30 ± 3 −27.5 ± 3.7
C.elegans 18 ± 3 23 ± 3 33 ± 3 25 ± 3 125 75 ± 7 58 ± 4 30 ± 3 −27.5 ± 5
D.melanogaster 19 ± 3 23 ± 3 33 ± 3 25 ± 3 125 75 ± 8 58 ± 4 31 ± 3 − 29 ± 5
H.sapiens 20 ± 4 24 ± 4 31 ± 4 24 ± 4 125 75 ± 5 55 ± 6 30 ± 3 − 26 ± 5

miRNA
C.briggsae 25 ± 4 29 ± 4 23 ± 3 22 ± 4 51 92 ± 7 45 ± 5 36 ± 2 − 37 ± 6
C.elegans 26 ± 5 29 ± 5 23 ± 4 21 ± 5 107 97 ± 5 44 ± 7 34 ± 4 − 36 ± 9
D.melanogaster 26 ± 4 32 ± 4 22 ± 3 20 ± 3 78 88 ± 13 42 ± 5 35 ± 3 − 32 ± 6
H.sapiens 23 ± 5 28 ± 5 26 ± 4 23 ± 6 158 89 ± 14 49 ± 8 36 ± 3 − 40 ± 9
M.musculus 23 ± 5 29 ± 5 26 ± 5 22 ± 5 69 69 ± 5 48 ± 9 37 ± 3 − 32 ± 5
A.thaliana 26 ± 4 31 ± 3 22 ± 3 21 ± 4 43 135 ± 49 43 ± 5 37 ± 2 − 57 ± 17

rRNA 21 ± 7 26 ± 4 30 ± 4 22 ± 6 581 88 ± 25 52 ± 10 32 ± 4 − 33 ± 12

Values are expressed as the mean ± SD. Base pairs represent the number of base pairs in the secondary structure relative to the total number of nucleotides in the sequence (the
maximum value is thus 50%). The results for rRNAs are showed globally, since the number of different species selected was very high.

cover five animal genomes and one plant genome: Homo
sapiens, Drosophila melanogaster, Caenorhabdbitis elegans,
C.briggsae, Mus musculus and Arabidopsis thaliana. Most
of the sequences were recently isolated using direct cloning
techniques, but some were predicted using computational
tools. However, this set should not be considered as com-
plete and is the subject of very active research (Carrington
and Ambros, 2003; Bartel, 2004).

Transfer RNAs were downloaded from the genomic tRNA
database (Lowe and Eddy, 1997). In order to have a com-
parable number of sequences, 500 sequences were selected
at random from four eukaryotic genomes, namely H.sapiens,
A.thaliana, C.elegans and D.melanogaster.

Ribosomal RNA sequences are much longer (1500–3000 nt)
and have a much more complex secondary and tertiary struc-
ture than the other types of non-coding RNAs. A selection of
regions that are similar in length compared with miRNAs and
tRNAs was made. From the European ribosomal RNA data-
base, 120 randomly chosen eukaryotic rRNA sequences from
the small ribosomal subunit were selected (Wuyts et al., 2004).
From each of these sequences, five areas were extracted that
fold into a secondary structure pattern that does not include
any significant base pairing with other parts of the molecule.
These areas correspond to helices 12–13, 23/e1–23/e3, 24,
42–44 and 49 (Wuyts et al., 2001).

Some basic statistics about nucleotide composition,
sequences length and MFE values are displayed in Table 1.

RNA secondary structure
Methods to predict the secondary structure from the primary
sequence information are based on minimizing the free
energy of the molecule by maximizing the number of favorable
base pairing interactions (Zuker and Stiegler, 1981; Schuster
et al., 1994). MFE is estimated by considering the min-
imum energy values obtained by complementary base pairs

decreased by the stacking energy of successive base pairs or
increased by the destabilizing energy associated with non-
complementary bases (Zuker and Stiegler, 1981; Schuster
et al., 1994). For this reason, the dinucleotide bias in RNA
sequences is considered to be important for the predicted
MFE and several authors have pointed out the importance of
taking into account the dinucleotide distributions when ran-
domizing sequences (Workman and Krogh, 1999; Rivas and
Eddy, 2000).

In our study, only the results of the optimal folding were
used. The biologically correct structure for tRNAs and rRNAs
is often not the calculated optimal structure but one that is
within a percent of the optimal structure (suboptimal structure)
(Zuker and Stiegler, 1981; Durbin et al., 1998). Therefore,
the results should be very close for the biologically active
structure. Unfortunately, the real in vivo secondary structure
of miRNA is not yet known.

Mononucleotide shuffling
This type of shuffling is trivial and is done simply by per-
muting the nucleotides of the sequence at random. The
dinucleotide frequencies are completely distorted using this
method.

Dinucleotide shuffling
The goal here is to shuffle a sequence while keeping the
dinucleotide distribution (or frequencies) constant. An imple-
mentation of the algorithm as described by Workman and
Krogh (1999) was used. The dinucleotide and mononucleotide
frequencies are exactly preserved.

First-order Markov model
We also used the DiShuffle program (Katz and Burge,
2003). This program derives a first-order Markov model from
the conditional probabilities found in the initial sequence.
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A random nucleotide is chosen as a seed for a new
sequence after which nucleotides will be added according
to the conditional probabilities. The process stops when the
sequence has the same length as the original. This method pro-
duces shuffled sequences with dinucleotide frequencies close
to the original sequences but that do not have exactly the same
values. Mononucleotide frequencies are not preserved.

Randomization test
A variant of the Z-score procedure (Le et al., 1988, 1989;
Workman and Krogh, 1999; Katz and Burge, 2003) was used
to determine if the MFE value is significantly different from
that of random sequences. The MFE value of the sequence
is compared with the distribution of MFE values obtained
by randomly reshuffling the order of the nucleotides in the
native sequence. This procedure is known as Monte Carlo
and randomization tests, and is used in many fields of biology
(Efron, 1979; Eddington, 1995; Manly, 1997). A high num-
ber of permutations (minimum 1000) are required to have
an accurate probability (Edwards, 1985; Jockel, 1986;
Eddington, 1995), but as the length of the sequences used
here is rather small, this is not a computational issue. Under
this model, no assumption is made upon the nature of the dis-
tribution and the probability is straightforward to compute,
as detailed below.

The randomization test can be summarized as follows:

(1) Compute MFE of the secondary structure inferred from
the original sequence.

(2) Randomize the order of the nucleotides in the original
sequence and compute MFE for the inferred structure
based on the shuffled sequence.

(3) Repeat step 2 a great number of times (1000) in order
to build the distribution of MFE values.

(4) If N is the number of iterations and R the number of
randomized sequences that have a MFE value less or
equal to the original value, then p is defined here as:

p = R

N + 1
.

To fold sequences into their secondary structure, we used the
ViennaRNA fold package (Hofacker et al., 1994) that imple-
ments Zucker’s energy minimization algorithm. The software
that implements the randomization test of secondary struc-
ture MFE, called randfold, is available under the terms of
the General Public License (see supplementary data).

RESULTS AND DISCUSSION
Two examples of randomized distributions are given in
Figure 1. Figure 1a shows the distribution of MFE values
for secondary structures inferred from randomized sequences
of the let7 miRNA precursor. Let-7 and Lin-4 genes are
the founding members of the miRNAs and control develop-
mental timing in C.elegans (Lee et al., 1993; Reinhart et al.,

C. Elegans - let7 miRNA
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Fig. 1. Distribution of MFE values for randomized sequences
(dinucleotide shuffling) for miRNA gene let-7 (a) and for a tRNA
gene (b). The black arrow indicates the MFE for the original
structure.

2000). The MFE value for the original structure of let7 lies
clearly in the extreme tail of the distribution, which corres-
ponds with a low P -value of 0.001. This implies that the
MFE value of the original structure of the let7 miRNA gene
is significantly different from that of a random sequence.

Figure 1b shows the distribution of MFE values for
structures inferred from randomized sequences of a tRNA
sequence, Ce-chr4.trna39-ArgACG (Lowe and Eddy, 1997)
of C.elegans. In this case, the MFE value for the original
tRNA structure falls in the middle of the distribution giving
a P -value of 0.345. Therefore, the null hypothesis cannot be
rejected and the MFE value for the original structure is not
significantly different from that of a random sequence.

A graph showing the distribution of P -values for all
the sequences used in this study is available as supple-
mentary data.

Figure 2 shows the results of the randomization tests for
miRNAs, rRNAs and tRNAs sequences (the complete list of
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Fig. 2. Proportion of sequences (given in %) that have a P -value below 0.05, 0.01 and 0.001, for each type of shuffling method used and for
each of the three types of non-coding RNAs used in this study.
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MFE values and their associated probabilities is available as
supplementary data). The proportion of miRNA sequences
that have a structure with a lower MFE than structures based
on randomized miRNA sequences is very high for the three
levels of significance defined. For example, more than 90%
of the miRNA sequences have a P -value <0.01 with the
mononucleotide and dinucleotide shuffling. There is also a
high proportion of sequences with a P -value of 0.001, based
on the three types of randomization methods (≥70% for the
mononucleotide and dinucleotide shuffling and >40% with
the first-order Markov).

Ribosomal RNA sequences show a less high proportion of
sequences for each P -value level compared to miRNA. For
example, for P < 0.01, only 50% of the sequences show
an MFE value that is lower than MFE values for structures
inferred from randomized sequences. For tRNA sequences,
<8% of the sequences have a P -value <0.01. This result is
in agreement with previous findings (Rivas and Eddy, 2000)
where 26 tRNA sequences out of 1415 (1.8%) were found to
have a P -value of 0.01.

The values obtained with the first-order Markov type of
shuffling are always slightly smaller than the values obtained
with the other types of shuffling. This is due to fluctuations
in the energies for the Markov sequences. Those fluctuations
arose due to higher variations in GC content while shuffling
sequences maintain a constant GC:AT ratio (Workman and
Krogh, 1999). This could artificially increase the number of
low values for the MFE of randomized sequences.

Thermodynamic stability of the secondary structure does
not seem to be of major importance for tRNAs and rRNAs.
For rRNAs, it is well known that the stability is enhanced
by interactions with protein structures in the ribosome (Xing
and Draper, 1995). For tRNAs, Workman and Krogh (1999)
already suggested that the tertiary structure, which is not
taken into account in secondary structure predictions, might
be of major importance for this class of molecules. For
miRNAs, precursor sequences do not have tight interactions
with proteins before their cleavage by Dicer (or Dicer-like)
enzymes (Lee et al., 2002). Therefore, a stable secondary
structure might be needed for this class of non-coding RNAs
to avoid early degradation. Indeed, the great majority of the
miRNA precursors have an MFE value significantly smaller
than MFE values found for structures inferred from random-
ized sequences. We believe that this observation can be used
for the more successful annotation of plant miRNA genes.
Usually, in order to identify miRNA genes, the MFE of the
sequence is calculated. Once this MFE is lower than a spe-
cified cutoff value the precursor sequence is accepted. Some
authors also suggested to use a threshold based on the MFE
normalized by the length of the sequence (Pervouchine et al.,
2003). This kind of approach has been proven to be very
successful, especially in animal genomes, where all known
miRNA genes are of comparable length and contain few
unpaired bases (Lai et al., 2003; Lim et al., 2003a,b). However,

in plant genomes the miRNA precursor sequences are often
much longer (Llave et al., 2002; Reinhart et al., 2002). It is
poorly understood how this property would affect the cutoff
value that is to be used in miRNA annotation. In our approach
the MFE value is compared to that of random sequences
with the same (di-)nucleotide composition, leading to a less
error-prone annotation of miRNAs in plants (Bonnet et al.,
2004).

The miRNAs used in our study have heterogeneous ori-
gins, and were obtained both by direct cloning methods
and by pure computational prediction. In order to avoid a
possible bias introduced by considering predicted miRNA pre-
cursors, we analyzed a subset of miRNA precursor sequences
that were validated by northern blot experiments (Lagos-
Quintana et al., 2001; Lau et al., 2001; Lee and Ambros,
2001; Calin et al., 2002; Lee et al., 2002; Schmittgen et al.,
2004). The set is composed of 47 sequences covering three
different animal taxa, namely C.elegans, D.melanogaster
and H.sapiens. Unfortunately, no plant miRNA precursor
sequence has been verified experimentally up to now (Reinhart
et al., 2002). Table 2 shows the MFE values and their associ-
ated P -values computed using 1000 repeats and a dinucleotide
randomization method. The results show clearly that most
of the P -values are very low, namely 45 sequences out of
47 (∼96%) have a P -value <0.07. Only two sequences
(C.elegans mir-52 and mir-69) have very high P -values (0.113
and 0.201). The fact that both those sequences are U rich and
that mir-69 have an unusual high MFE value of −18 kcal/mol
might explain why they have such high P -values. Based on
these results, the level of sensitivity of the test appears to
be high. However, the fact that a relative high number of
rRNA sequences that also have a low P -value clearly suggest
that the MFE randomization test alone cannot be used as a
valid miRNA sequence detection tool. It should be used in
association with other type of evidence such as the abso-
lute MFE value, comparative genomics or other secondary
structure characteristics in order to reliably detect genuine
miRNA sequences (Bonnet et al., 2004). In this respect,
for the integration of the MFE randomization test for val-
idating potential miRNA precursor sequences, a cutoff level
must be defined. Preferably, this value should be evaluated
on a set of precursor sequences that have been character-
ized experimentally. The cutoff value will be a trade-off
between discarding ‘true’ sequences (false negatives) and
accepting ‘false’ ones (false positives). For example, if we
consider the results of Table 2 for H.sapiens, a cutoff value
set to P = 0.05 would discard only two sequences from
this set.

Our results also strengthen what is known from the bio-
genesis of miRNA precursors: a stable secondary structure
with specific properties is probably needed for a correct
processing of those molecules by specific enzymes. Mature
miRNAs are processed from their stem–loop precursors by
double-stranded specific nucleases of the so-called Dicer
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Table 2. MFE and computed P -values for experimentally validated miRNA
precursor sequences (see text for details)

miRNA MFE P

C.elegans cel-mir-35 −54 0.001
cel-mir-36 −50 0.001
cel-mir-37 −45 0.001
cel-mir-38 −50 0.001
cel-mir-39 −45 0.001
cel-mir-40 −46 0.001
cel-mir-1 −41 0.001
cel-mir-42 −42 0.001
cel-mir-43 −47 0.001
cel-mir-44 −42 0.001
cel-mir-45 −41 0.001
cel-mir-80 −31 0.001
cel-mir-60 −35 0.001
cel-mir-34 −37 0.002
cel-mir-84 −23 0.003
cel-mir-52 −26 0.113
cel-mir-69 −18 0.201

D.melanogaster dme-mir-1 −36 0.001
dme-mir-2b-2 −37 0.001
dme-mir-6-2 −27 0.001
dme-mir-6-3 −32 0.001
dme-mir-2b-1 −28 0.002
dme-mir-6-1 −26 0.006

H.sapiens hsa-let-7d −43 0.001
hsa-mir-16 −38 0.001
hsa-mir-20 −31 0.001
hsa-mir-21 −36 0.001
hsa-mir-28 −51 0.001
hsa-mir-29 −25 0.001
hsa-mir-30a −37 0.001
hsa-mir-33 −37 0.001
hsa-mir-92-1 −36 0.001
hsa-mir-93-1 −45 0.001
hsa-mir-101 −36 0.001
hsa-mir-105-1 −43 0.001
hsa-mir-224 −37 0.001
hsa-mir-30d −28 0.001
hsa-let-7d −43 0.001
hsa-mir-219 −55 0.002
hsa-mir-27a −38 0.002
hsa-mir-15a −31 0.003
hsa-mir-24-1 −26 0.003
hsa-mir-216 −41 0.005
hsa-mir-220 −43 0.011
hsa-mir-107 −30 0.016
hsa-mir-18 −22 0.055
hsa-mir-24-2 −27 0.069

family (Hutvagner and Zamore, 2002; Schauer et al., 2002).
Recently, another RNase protein named Drosha has been
identified as the core nuclease that executes the initiation step
of miRNA processing in the nucleus (Lee et al., 2003). The
question remains how these RNAses can recognize their tar-
gets in a very specific manner whereas the primary sequences
do not show any conserved elements. In order to answer

this question, it would be important to precisely determine
the structures of miRNA precursors and RNase III proteins.
According to the results of our study, secondary structure
might play a crucial role here.
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