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Abstract

Background: MicroRNAs (miRNAs) are small RNAs that recognize and regulate mRNA target genes. Multiple lines of
evidence indicate that they are key regulators of numerous critical functions in development and disease, including cancer.
However, defining the place and function of miRNAs in complex regulatory networks is not straightforward. Systems
approaches, like the inference of a module network from expression data, can help to achieve this goal.

Methodology/Principal Findings: During the last decade, much progress has been made in the development of robust and
powerful module network inference algorithms. In this study, we analyze and assess experimentally a module network
inferred from both miRNA and mRNA expression data, using our recently developed module network inference algorithm
based on probabilistic optimization techniques. We show that several miRNAs are predicted as statistically significant
regulators for various modules of tightly co-expressed genes. A detailed analysis of three of those modules demonstrates
that the specific assignment of miRNAs is functionally coherent and supported by literature. We further designed a set of
experiments to test the assignment of miR-200a as the top regulator of a small module of nine genes. The results strongly
suggest that miR-200a is regulating the module genes via the transcription factor ZEB1. Interestingly, this module is most
likely involved in epithelial homeostasis and its dysregulation might contribute to the malignant process in cancer cells.

Conclusions/Significance: Our results show that a robust module network analysis of expression data can provide novel
insights of miRNA function in important cellular processes. Such a computational approach, starting from expression data
alone, can be helpful in the process of identifying the function of miRNAs by suggesting modules of co-expressed genes in
which they play a regulatory role. As shown in this study, those modules can then be tested experimentally to further
investigate and refine the function of the miRNA in the regulatory network.
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Introduction

MicroRNAs (miRNAs) are small endogenous regulatory

RNAs, present in a wide variety of eukaryotic organisms. They

are incorporated into an RNA induced silencing complex (RISC)

that binds to sites of variable complementarity in target

messenger RNAs, triggering their degradation and/or repressing

their translation [1]. Evidence for the participation of miRNAs in

cell growth, cell differentiation and cancer is currently piling up.

Nearly half of the annotated human miRNAs map within fragile

chromosomal regions, which are areas associated with various

types of human cancers. Recent evidence indicates that miRNAs

as well as the factors that participate in miRNA biogenesis may

function as tumor suppressors and/or oncogenes [2]. According

to the latest miRBase repository release [3], there are .700

human mature miRNA sequences identified with experimental

support, while some computational studies expand this list to

more than 1,000 [3], roughly equaling the number of

transcription factors [4]. Computational and experimental studies

have also predicted that between 30% and 100% of the human

protein coding genes might be under the post-transcriptional

regulation of miRNAs [5,6]. It is not difficult to see that even by

taking the most conservative values, the regulatory network

induced by such a large number of regulators and targets is

potentially extremely large. Furthermore, miRNAs do not act in

isolation, but are part of a complex regulatory network, involving

transcription factors, signal transducers and other types of

regulatory molecules [7]. Reconstructing and analyzing such

regulatory networks is thus a complex but crucial challenge to

tackle.
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Various algorithms exist to infer regulatory networks from

expression data [8,9,10]. One of the most powerful methods,

especially for eukaryotic organisms, assumes a modular structure

of the underlying regulatory network, where a group of co-

expressed genes is regulated by a common set of regulators (also

known as the regulatory program) [10]. The regulatory program

uses the expression levels of the set of regulators to predict the

condition-dependent mean expression of the co-expressed genes.

Thus, modules are composed of clusters of co-expressed genes

together with their associated regulators. As a regulator can be

associated with more than one module, the ensemble forms a

module network. We have recently developed a novel algorithm

which extends the original module network concept of Segal and

co-workers [10] by using probabilistic optimization techniques

which enable prioritization of the statistically most significant

clusters of co-expressed genes and their candidate regulators

[11,12]. The main advantage of this algorithm is that it extracts

more representative centroid-like solutions from an ensemble of

possible statistical models, in order to avoid suboptimal solutions.

By testing it on various biological datasets, we have shown that this

approach generates more coherent modules, and that regulators

consistently assigned to a module are more often supported by

external sources of data [11,12].

In this study, we have adapted our module network algorithm to

take as input a heterogeneous dataset of both miRNA and

messenger RNA (mRNA) expression data measured on the same

samples. Multiple miRNAs are assigned as high-scoring candidate

regulators for several modules, together with well-known tran-

scription factors or signal transducers. A detailed analysis of three

modules where miRNAs are selected as high-scoring regulators

shows that this assignment is highly coherent with the module

function and is also supported by various external sources of data.

We have also validated one of those modules experimentally,

showing that over-expression or inhibition of the miRNA assigned

as a regulator changes significantly the expression of a selection of

module genes, thereby confirming the inference of the algorithm.

Those results corroborate module network inference as a robust

and useful approach to gain more precise insights into miRNA

function.

Results

Inference of a microRNA module network from
expression data

The LeMoNe algorithm, starting from an expression data

matrix and a list of candidate regulators, will produce a module

network, composed of modules of co-expressed genes and their

associated regulators. The algorithm is also clustering the

conditions (columns) for each set of co-expressed genes, creating

condition clusters. The list of regulators for a given module is

ordered according to their individual score. This score only takes

into account the differential expression of the regulator across the

different different condition clusters, and not their absolute value.

This way we can simultaneously evaluate and compare mRNA

and miRNA candidate regulators, using the expression levels of

each class of regulators. As input for our algorithm, we used a

dataset composed of expression data measured on 89 tumor and

normal tissue samples (representing 11 tumor classes) both for

11,833 messenger RNAs and 124 miRNAs [13]. Unlike previous

attempts [14,15,16], our approach for the integration of miRNAs

in the network is not based on miRNA target prediction, or a

mixture between target prediction and expression data, but relies

solely on expression data. The algorithm generated a set of 76

tightly co-expressed gene clusters, corresponding to a total of 2,987

genes. We calculated the GO enrichment for all the modules [17]

and found a total of 44 clusters having at least one GO category

enriched (p,0.05), for a total of 589 enriched categories (the

complete list of modules and their GO categories is available as

table S2). For the assignment of regulators, we compiled a list of

1,841 candidate regulators based on their GO annotation (either

transcription factors or signal transducers), plus the list of 124

miRNAs. After the assignment of regulators we took a stringent

cutoff corresponding to the top 2% most significant predicted

regulatory interactions (Figure 1), obtaining a final set of 294

unique regulators (the complete list of module genes and regulators

is available in table S1). Within this set, ten miRNAs were selected

as regulators for a total of seven modules (Table 1). In order to

assess the validity and the relevance of the inferred module

network, we here present a detailed analysis of three modules, with

an emphasis on the typical features of miRNA mediated

regulatory modules. Those modules were selected based on their

intrinsic interest, functional coherence and the high number of

literature references discussing their putative function.

MiR-133 and miR-145 are assigned as regulators of a
smooth muscle actomyosin module

Module 29 is a small module composed of four genes and five

assigned regulators (Figure 2a). The GO over-represented

categories for this module are linked to smooth muscle

development and actomyosin structure (Figure 2a and table S2).

MYH11 encodes a smooth muscle myosin heavy chain family

member. ACTG2 is a gamma 2 actin protein found in enteric

tissues. The two other genes in the module (MYLK and CNN1)

are well known regulators of the actin-myosin interactions. MYLK

is the myosin light chain kinase, a dedicated calcium-dependent

kinase that phosphorylates a specific site on the regulatory light

chain of the myosin, enhancing its activity. MYLK is ubiquitous in

all adult tissues with the highest amounts found in smooth muscle

tissues [18]. CNN1 (calponin) is a calcium binding protein that

inhibits the ATPase activity of the myosin in smooth muscle. The

top regulator (PPP1R12B) selected for this module is a myosin

phosphatase subunit. The myosin phosphatase is also a well known

core regulator of the actomyosin pathway, inhibiting the myosin

activity [18]. The second high scoring candidate regulator is a

miRNA, miR-133, while the third regulator is the TGF-beta

stimulated clone-22 member 1 (TSC22D1) gene, which encodes a

leucine zipper domain protein, a member of the TGF-beta1

pathway which is involved in the regulation of transcription. The

last regulators are ANGPTL2, a vascular endothelial growth

factor, and another miRNA, miR-145.

The two miRNAs selected as regulators for this module clearly

show a tightly positively correlated expression pattern with the

module genes (Figure 2a). As most miRNAs have been

characterized so far as negative regulators of gene expression, this

suggest an indirect regulation between the miRNAs and module

29 genes. Recent studies reveal several likely candidate genes that

could act as intermediate regulators between the miRNAs and

module 29 genes. MiR-133, selected as the second best regulator

for this module (Figure 2a), was recently shown to be a key

regulator for skeletal muscle development and cardiac muscle

hypertrophy [19,20]. In those studies, miR-133 has been shown to

directly regulate the SRF transcription factor. SRF is recognized

as a vital factor for normal cytoskeletal and contractile cell

activities and all the module 29 genes (MYH11, CNN1, ACTG2,

MYLK) are known to be direct targets of SRF [21]. Those

literature results support the hypothesis of an indirect regulatory

link between miR-133a and module 29 genes via SRF. Most

studies on SRF activity have so far characterized this factor as a

A MicroRNA Module Network
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transcriptional activator [21], but some results also suggest that

SRF might act as a transcriptional repressor of its targets genes

[22,23,24]. SRF mediated gene repression is not clear, but it might

involve the recruitment by SRF of transcriptional silencers [23,24].

If we hypothesize that SRF is repressing the transcription of

module 29 genes, then the regulatory chain miR-133 – SRF –

module 29 genes can explain the positive gene expression

correlation that is observed in Figure 2a. The other miRNA

selected as a regulator, miR-145 was recently shown to be an

important regulator for smooth muscle cell fate [25]. This study

[25] also shows that miR-145 is activating one of its direct targets,

the myocardin (Myocd), which is a transcription factor well known

to activate smooth muscle gene expression by interacting with SRF

[26]. Thus we also have a regulatory chain miR-145 – Myocd –

module 29 genes that can explain the pattern of expression

observed in Figure 2a. Neither SRF nor Myocd are assigned as

regulators or clustered together with the other module 29 genes.

Unfortunately, the myocardin gene was not present in the

microarrays used to produce the datasets [13]. The profile of the

SRF transcription factor appears to correlate poorly with the

expression of module 29 genes in our dataset (Data file S1),

explaining why this gene could not be selected as a regulator.

Several reasons could explain why the profile is divergent, like

post-translational modifications or the fact that miRNAs act at the

post-transcriptional level, possibly preventing the regulatory effect

to be detected (by repressing the translation).

MiR-142s are assigned as regulators of an immune
response module

Module 18 is composed of six genes (Figure 2b), of which five

encode immunoglobulins corresponding either to the heavy chain

(IGHG4, IGHA2, IGHA1) or to the light chain (IGKV1-5,

IGLV3-21), while IGLL1 is the surrogate light chain, a critical

component of the pre-B cell receptor complex. Not surprisingly,

we found the GO category immune response over-represented for

this module (Figure 2b and table S2). All the module genes are

known to be mostly expressed in developing and mature B-cells,

revealing a coherent module [27]. Nine high scoring regulators

were selected for this module. The top regulator is a homeobox

gene, HOXC5. The HMGA1 gene is selected as the second best

regulator for this module. High mobility group proteins (HMGA)

regulate the activity of a wide variety of genes by changing the

DNA conformation of their target genes. HMGA1 is known to co-

activate transcription in B-cells and to be important for B-cells

development [28]. The third and fourth candidate regulators are

two miRNAs processed from the same precursor, miR-142-5p and

miR-142-3p. The HLA-DRB1 gene belongs to the HLA class II

beta chain paralogues. It is known to play a central role in the

immune system by presenting peptides derived from extracellular

proteins [29]. CCL5 is a chemotactic cytokine playing an active

role in recruiting leukocytes to inflammatory sites [30]. AXL is a

receptor tyrosine kinase that is transforming in fibroblast and

hematopoietic cells, and is involved in mesenchymal development

[31]. CXCL14 is a small cytokine belonging to the CXC

chemokine family. This gene is chemotactic for monocytes and

can activate these cells in the presence of an inflammatory

mediator [32]. CXCL14 expression is reduced or absent from

most cancer cells [33]. This module is probably linked to an

immune response triggered by various tumor states. Such

persistent pro-tumor immune responses are known to potentiate

primary tumor development and malignant progression.

MiR-142s are preferentially expressed in hematopoietic tissues

and their expression is regulated during hematopoiesis, suggesting

a role in immune cells differentiation [34]. The transcription factor

Figure 1. Random and real regulators score distributions. The histograms represent the distribution of randomly assigned (green) and true
(yellow) regulators scores for the module network. The arrow for the random regulators represents the maximum score for randomly assigned
regulators with the value indicated between brackets. The arrow for the true regulators represents the cutoff score value, with the raw value
indicated between brackets.
doi:10.1371/journal.pone.0010162.g001
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Table 1. List of modules where miRNAs have been selected as high-scoring regulators.

Module ID
Number of genes
in the module

GO categories enriched for
the module (p,0.05) Regulators Score

15 73 None MAFB 3065

NFIB 2774

MSRB2 713

IGFALS 464

NR2C1 457

CCL23 392

MORF4L1 288

FOS 249

let-7c 231

miR-125b 209

17 17 Digestion NFIB 3785

Proteolysis HEYL 2361

Lipid catabolic process PLA2G1B 2164

miR-216 1085

CCRL2 780

MC5R 327

TRAF1 285

CDX1 261

DLX2 254

E2F1 251

IFNGR1 250

CCR9 244

TACR3 215

18 6 Immune response HOXC5 1937

HMGA1 1007

miR-142-5p 863

miR-142-3p 709

HLA-DRB1 380

CCL5 241

AXL 215

CXCL14 214

25 9 None miR-200a 1786

PPP1R1B 727

GPR30 512

PTGER3 456

ZNF157 320

GNB3 262

GNG5 209

29 4 Actomyosin structure organization and biogenesis PPP1R12B 7346

Smooth muscle contraction miR-133a 1216

Smooth muscle fiber development TSC22D1 1209

Elastic fiber assembly ANGPTL2 353

Striated muscle development miR-145 220

35 20 None NFATC1 2827

SH3BP1 2162

FMNL2 699

RASSF4 381

GNAQ 290

A MicroRNA Module Network
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TCF12 is predicted as a target for miR-142-3p [35]. In a previous

study, a combined dosage of the factors E2A, E2-2 and TCF12

was shown to be required for normal B-cell development. More

precisely, TCF12 is important for the generation of normal

numbers of pro-B-cells [36]. Because module 18 genes are

expressed in developing B-cells, the regulation of TCF12 by

miR-142-3p might be important for this process. Furthermore, we

found conserved binding motifs for TCF12 for most module 18

genes (Data file S1), indicating that this transcription factor could

be important for their regulation. Like for module 29 and SRF, the

expression profile of TCF12 is highly divergent from the

expression profiles of module 18 genes, explaining why this gene

was not selected as module gene or regulator (data not shown).

Mir-200a is a key regulator of a module involved in
epithelial homeostasis

Module 25 is composed of nine genes (Figure 2c). SCNN1A

(also known as ENaC) is the subunit alpha of the amiloride

sensitive epithelial sodium channel, expressed in many epithelial

tissues [37]. PRSS8 (prostasin) is a trypsinogen which regulates the

activity of the epithelial sodium channel [38]. FDXY3 is a small

membrane protein that is highly transcribed in tissues such as

uterus, stomach and colon, and may function as a Na/K channel

regulator [39]. TACSTD1, the tumor-associated calcium signal

transducer 1, functions as a calcium-independent cell adhesion

molecule [40]. Other genes like ATAD4 or TMEM63A are trans-

membrane proteins of unknown function. RAB25 is a small GTP

binding protein. RAB proteins have been involved in the

regulation of vesicle trafficking [41]. The module top regulator is

miR-200a. Regarding the other regulators, PPP1R1B is a

phosphoprotein regulated by dopamine and cAMP, and is an

inhibitor of the protein phosphatase 1. Besides its well-known role

in the central nervous system, it is highly expressed in a variety of

epithelial tissues where it might play a role in epithelial signaling

and tumorigenesis [42]. GPR30 is a trans-membrane G protein

coupled estrogen receptor [43], while PTGER3 is a G-protein

coupled prostaglandin E2 receptor that is involved in various

physiological processes and was shown to affect intracellular

concentrations of Ca++ and cAMP [43]. ZNF157 is a zinc finger

protein of unknown function while GNB3 and GNG5 are G

proteins subunits involved in signal transduction. From the

functions of these genes, we can conclude that most of the module

25 genes and regulators are likely involved in epithelial

homeostasis, although we did not find any particular GO category

enriched for this module. It is also worth noting that several of

those genes are related to tumor progression [40,41,44].

MiR-200a, which was selected as the best candidate regulator

for module 25, is a member of a miRNA family of five closely

related miRNAs (miR-200a, miR-200b, miR-200c, miR-141 and

miR-429). Recent publications show epithelial-specific expression

of miR-200a and miR-200b [45,46]. We designed a set of

experiments to validate the role of miR-200a as a regulator of the

expression of genes in module 25. MiR-200a was introduced in a

human de-differentiated epithelial breast cancer cell line MDA-

MB-231, known to express aberrantly low levels of miR-200a. The

expression of six genes (RAB25, IRF6, SCNN1A, PRSS8, ATAD4,

TACSTD1) out of nine belonging to module 25 was monitored

using RT-qPCR (Figure 3). Without exception, the six monitored

genes show a clear up-regulation upon exogenous expression of

miR-200a (Figure 3a). The reverse experiment, inhibition of some

members of the miR-200 family (miR-200a,b,c) in the MDA-MB-

231 cells using antagomirs, resulted in the significant down-

regulation of four out of five tested genes, (SCNN1A is not

significantly down-regulated, ATAD4 is not expressed in normal

conditions in this cell line)(Figure 3b). Those results clearly show

that miR-200a is a core regulator of module 25, most probably

with other members of the miR-200 family.

In this module, we observe again a clear positive correlation

pattern between miR-200a and the module genes expression,

suggesting an indirect regulatory circuit between miR-200a and

module 25 genes (Figure 2c and Figure 3a and 3b). Recent

experimental work showed that miR-200 family members directly

target the transcription factors ZEB1 and ZEB2 [47,48,49].

These transcription factors are known as major transcriptional

repressors of epithelial differentiation orchestrating epithelial

mesenchymal transition (EMT) [50]. EMT is a process that drives

epithelial cells from a polarized phenotype to a highly motile, non

polarized mesenchymal phenotype and is known to occur in

epithelial tumors giving rise to highly malignant cancer cells. The

ZEB transcription factors have been functionally related to

members of the miR-200 family via a double negative feedback

loop, thus promoting EMT and cancer invasion [47,51,52]. We

found conserved ZEB binding motifs for several module 25 genes

(Data file S1), suggesting that ZEB factors could be the

intermediate regulators between miR-200 and module 25 genes.

To test this hypothesis, we down-regulated the ZEB1 transcrip-

tion factor in MDA-MD-231 cells with a specific siRNA while

monitoring the expression of eight module 25 genes (Figure 3c).

All the genes show a strong up-regulation pattern, with the

exception of the gene RAB25 (Figure 3c). Those results

demonstrate that the ZEB1 factor is essential for the regulation

of module 25 genes. Taken together, our experimental results

(Figure 3) strongly suggest the existence of a regulatory chain

between miR-200 and module 25 genes via the ZEB1

transcription factor (Figure 4). As both miR-200 and ZEB1 play

important roles in EMT [47,48,49,51,52] we hypothesize that

module 25 repression might contribute to the malignant EMT

process in cancer cells.

Module ID
Number of genes
in the module

GO categories enriched for
the module (p,0.05) Regulators Score

CTNNBIP1 288

miR-181* 249

94 3 Folic acid metabolic process miR-10a 253

Regulation of Notch signaling pathway

Folic acid transport

All regulators that are above cutoff are listed for each module, and ordered according to their decreasing score value. MicroRNA genes are highlighted in bold.
doi:10.1371/journal.pone.0010162.t001

Table 1. Cont.

A MicroRNA Module Network

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e10162



Figure 2. Modules 29 (a), 18 (b) and 25 (c) genes (MG) and assigned regulators (MR). Gene expression values are color coded, ranging from
dark blue (low expression levels) to bright yellow (high expression levels). In each figure, columns represent a different sample. The color-coded bar
at the bottom of the graph represents the tissue origin (see the legend), while the gray squares just below indicate whether the sample tissue was
normal (light gray) or tumor (dark gray). The candidate regulators are ordered by decreasing score value (from top to bottom). The samples are

A MicroRNA Module Network
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Discussion

MiRNAs have emerged quite recently as a new and important

layer of regulation. Most of the studies so far have focused on their

identification and on the detection of their targets. Several

experimental studies have shown that at least some of them play

key roles in various developmental and cellular pathways.

Integrating miRNAs in regulatory networks is therefore of

fundamental importance and should ideally be done taking into

account the other types of regulatory molecules. So far, a few studies

have proposed a computational strategy to infer miRNA mediated

module networks [14,15,16]. These were mainly based on miRNA

target prediction, or on a combination of target prediction and

expression data. We have applied a robust and unbiased module

network inference algorithm to a cancer-related expression data set

of both mRNAs and miRNAs. In our approach, miRNAs were

considered as candidate regulators, together with other types of

regulators, like transcription factors and signal transducers. Even

after applying a stringent cutoff, several miRNAs were retained as

high scoring, statistically significant candidate regulators for various

modules. Through an in-depth analysis of three of those modules,

we showed that the assignment of specific miRNAs as regulators is

supported by various external sources and is functionally coherent.

Furthermore, we could show experimentally that a miRNA,

assigned as the best regulator, is indeed a key regulator for the

module genes expression. The number of miRNAs assigned in this

study (10) might seem rather modest, but this number has to be

evaluated with respect to the total number of miRNAs for which

expression was measured in the samples (124). The ratio assigned

per total number of miRNAs is equal to 8%, while the same ratio

value is 15% for the ensemble transcription factors plus signal

transducers (284/1841). The two ratio values are comparable and

therefore we can reasonably expect a higher number of miRNAs

assigned when an increased coverage of the miRNome expression

landscape will be available.

Nevertheless, just as with other similar methods, care has to be

taken for the interpretation of the inferred regulatory model. In

particular, correlation of gene expression might not always indicate

a direct interaction. Indeed, for the three modules we have

investigated in detail, we have found an indirect regulation pathway

between the regulator and the module genes. Furthermore, none of

those indirect regulator genes were assigned by the algorithm in the

regulation program or even clustered together with the module

genes. As we could show for module 29 and the SRF transcription

factor, the reason is because those indirect regulators expression

profile differ significantly from those of the module genes. Various

reasons can explain this divergence, for example the regulation

might happen at the post-transcriptional level, or might be the result

of post-translational modifications. Indirect regulators might of

course complicate the interpretation of the results but they are to be

expected, especially in higher eukaryotic organisms where regula-

tory networks are expected to be more complex [53].

Taken together, our results show that novel insights can be gained

from a robust module network analysis of miRNA and mRNA

expression data and support the view that at least some miRNAs

have key regulatory roles in important cellular processes. Our

approach has also the advantage of providing a direct view of post-

transcriptional modifications through the integration of miRNAs,

where mRNA expression alone might not be enough to reveal the

existence of regulatory interactions. All three modules for which we

did a detailed analysis in this study have each a coherent set of

genes, involved in the same process and function. Furthermore, by

connecting miRNAs to coherent modules, we believe that this

approach can help to elucidate miRNA function and could

efficiently drive experimental work towards the identification of

key regulatory components in various processes. With the rapid

proliferation of various techniques to measure with a high accuracy

the levels of expression for hundreds of miRNAs, and the

concomitant availability of mRNA expression data, it will be highly

appealing to apply computational strategies like the one we describe

here to expand our knowledge on global regulatory networks.

Materials and Methods

Expression data sets
We used a normalized cancer expression data set previously

published [13]. We performed additional filtering steps to improve

the quality of the input data set. Probesets with no known ensembl

gene identifiers were discarded, as well as miRNA sequences that

were not annotated as human miRNAs in the most recent

miRBase release [3]. The final data matrix contained 11,833 genes

and 124 miRNAs, for which expression was measured across 89

samples covering 11 different tumor classes.

Module network inference
We used the LeMoNe algorithm to infer the module network

[11,12,54]. In a first step, the algorithm is searching for a partition

of genes into clusters of co-expressed genes. In a second step, the

algorithm defines a regulatory program (a set of regulator genes)

for each cluster. To avoid local optima traps in the first step, the

algorithm uses a gibbs sampling approach for two-way clustering

of both genes and conditions [54]. For a given input expression

matrix, multiple clustering solutions are generated. For this study,

we generated 30 different cluster solutions from the initial dataset.

This ensemble of partially overlapping solutions is averaged to

produce a set of tight clusters, representing subsets of genes which

consistently cluster together in all solutions. The set of tight clusters

is extracted using a graph spectral method [54]. For the second

step, regulation programs are learned using a fuzzy decision tree

model. The two-way clustering of the first step has also generated

condition clusters (set of conditions having a similar mean and

standard deviation) for each set of co-expressed genes. The

condition clusters of a given module are first linked together in a

hierarchical decision tree. Each node in the tree is defining a split

between two sets of conditions (corresponding to low and high

expression levels). Regulators are assigned to each node of the tree

using a probabilistic score reflecting how well the expression levels

of the regulator match the genes expression levels defined by the

split value (for details about the mathematical model of the

algorithm, see [11]). Just as for the gene clusters, multiple solutions

are generated for the conditions clusters. Consequently, there are

multiple decision trees and multiple regulators assigned for each

node of each hierarchical tree. We adopt an ensemble approach

again by summing the strength with which a regulator participates

in each regulatory program for a given set of co-expressed genes. A

global score is calculated, reflecting the statistical confidence of the

regulator over all the nodes of all the hierarchical trees generated

for the set of co-expressed genes [11]. For this study, we assigned

up to 100 regulators for each node of each of the 100 hierarchical

trees defined for each module. It is worth noting that by using a

grouped in leaves of homogeneous expression values, according to the hierarchical trees indicated on top of each figure. The orange boxes at the
right of the figure indicate overrepresented GO categories (p#0.05).
doi:10.1371/journal.pone.0010162.g002
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score that only takes into account the differential expression of a

regulator across the different condition clusters, we can simulta-

neously evaluate and compare mRNA and miRNA candidate

regulators. In the end, the set of regulators assigned to each cluster

of co-expressed genes can be ranked according to their global

probabilistic score and a cutoff level can be defined, keeping only

very high-scoring regulators. In order to evaluate the statistical

significance of the assigned regulators, a second set of randomly

assigned regulators is generated along the set of ‘‘true’’ regulators

(Figure 1). The complete list of modules together with their high-

scoring regulators for this study is available in the table S1. The

LeMoNe software package can be downloaded from our website,

is open-source and free of charge for academics (http://

bioinformatics.psb.ugent.be/software/details/lemone).

Figure 3. Validation of miR-200a as a regulator of module 25 genes expression. (a) Real time quantitative PCR (RT qPCR) analysis of the
expression of module 25 genes RAB25, IRF6, SCNN1A, PRSS8, ATAD4 and TACSTD1 and upon over-expression of miR-200a in MDA-MD-231 cells (mean
6 standard deviation). The y-axis represents the relative mRNA expression value. miR-1 was used as the control (Ctrl), as it is not known to target any
of the monitored genes (b) RT qPCR analysis of the relative expression for the genes RAB25, IRF6, SCNN1A, PRSS8 and TACSTD1 in MDA-MB-231 cells
infiltrated with miR-200a,b,c antagomirs. The y-axis represents the relative mRNA expression value (mean 6 standard deviation). miR-1 was used as
the control (Ctrl) (c) RT qPCR analysis of the relative expression levels of module 25 genes RAB25, IRF6, SCNN1A, PRSS8, ATAD4, TACSTD1, TMEM63A
and FXYD3 in MDA-MB-231 cells where ZEB1 is knocked down. The first barplot (black) shows effective repression of ZEB1 levels upon transfection
with the ZEB1 specific siRNA. Par = parental cell culture, Mock = mock transfection, si-ZEB1 = transfection with the ZEB1 specific siRNA.
doi:10.1371/journal.pone.0010162.g003
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Gene Ontology over-represented categories
For each module, we calculated GO enrichment using the

BiNGO tool [17]. The complete list of GO categories enrichment

for all the modules is available in the table S2.

Transcription factor binding motifs
We used the ConTra [55] software tool to look for conserved

TCF12 and ZEB motif binding sites in the promoter regions of

module 18 and 25 genes. A multiple alignment of nine eutherian

mammal species (Bos taurus, Canis familiaris, Equus caballus, Pan

troglodytes, Pongo pygmaeus, Macacca mulatta, Mus musculus and Rattus

norvegicus) and a specific position weight matrix were used to

determine the conservation of the motif across all species.

Cell culture
Human cancer cell lines were originally obtained from ATCC.

MDA-MB-231 cells were maintained in Leibovitz’s L-15 medium

supplemented with 10% fetal calf serum (FCS), 100 mg/ml

penicillin, 100 mg/ml streptomycin and 0.03% L-Glutamine.

These cells were grown at 37uC without CO2 supply.

miRNA repression and overexpression assays
MDA-MB-231 cells were seeded at 200.000 cells per well in 6-

well plates in complete medium without antibiotics one day prior to

transfection. The miRNA precursors and inhibitors as well as the

positive and the negative control miRNAs were transfected at a final

concentration of 25 nM using DharmaFECT 1 transfection reagent

(ThermoSCIENTIFIC- Dharmacon) according to the manufactur-

er’s instructions with the modification of using 8 ml of reagent

instead of 6. The medium was refreshed after 18–24 hrs for the

MDA-MB-231 cells and total RNA was collected 48 hrs post

transfection. The negative control is Pre-miRTM miRNA Precur-

sor–Negative Control #1, which does not target any known mRNA

within the human or mouse transcriptome. The positive control is

miR-1 Pre-miR miRNA precursor which has been shown to

effectively downregulate the expression of twinfilin-1, also known as

PTK9, at the mRNA level [56]. Validation of the downregulation of

PTK9 was performed using a TaqManH Gene Expression Assay

(Assay ID: Hs00702289_s1). The control miRNAs and the qRT-

PCR assay for human PTK9 were provided in the Pre-miRTM

miRNA Starter Kit (Ambion Cat #AM1540).

ZEB1 repression assay
MDA-MB-231 cells were seeded at 200.000 cells per well in 6-

well plates in complete medium without antibiotics one day prior

to transfection. ZEB1 siGENOME-SMARTpool was used for the

downregulation of ZEB1 (ThermoSCIENTIFIC- Dharmacon, M-

006564-02-0010), which consists of four SMART-selection

designed siRNAs targeting one gene. The siZEB1 was dissolved

in 16 siRNA buffer (ThermoSCIENTIFIC- Dharmacon, B-

002000-UB) at a final concentration of 20 mM and was transfected

at a final concentration of 25 nM using DharmaFECT 1

transfection reagent (ThermoSCIENTIFIC- Dharmacon) accord-

ing to the manufacturer’s instructions with the modification of

using 8 ml of reagent instead of 6. As a negative control 16 siRNA

buffer was used (MOCK transfection).

Quantitative reverse transcription PCR (qRT-PCR)
Total RNA was extracted using Trizol (Invitrogen) according to

the manufacturer’s instructions with one modification; absolute

ethanol was used in place of isopropanol. For the qPCR analysis

cDNA synthesis was performed on 1 mg of total RNA using the

iScript synthesis kit (BIO-RAD). The qRT-PCR for every gene

was performed on 20 ng of cDNA in triplicate using the

SYBRGreen I Master (Roche) or Probes Master (Roche) on a

LightCyclerH480 Real-time PCR System (Roche). The expression

levels were determined using comparative quantification to the

negative control and all quantification data were normalized

against 2 reference genes, HMBS and TBP. The sequences of the

RT-qPCR primers that were used are given in the data file S1.

Supporting Information

Table S1 Complete list of module genes and regulators.

Found at: doi:10.1371/journal.pone.0010162.s001 (0.28 MB

XLS)

Table S2 Gene Ontology (GO) categories enrichment for each

module.

Found at: doi:10.1371/journal.pone.0010162.s002 (0.14 MB

XLS)

Data file S1 Gene expression profile of MYH11, CNN1,

ACTG2 and MYLK compared to SRF; TCF12 binding motifs

for module 18 genes; ZEB binding motifs for module 25 genes;

PCR primers.

Found at: doi:10.1371/journal.pone.0010162.s003 (0.49 MB

DOC)
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Figure 4. Module 25 hypothetical regulation model. MiR-200
genes repress ZEB factors, which in turn repress the expression of
module 25 genes. The light yellow indicate genes assigned as
regulators, the light green indicates module genes while the light
orange indicates genes not assigned as regulators, but supported by
literature (indirect regulation). This regulatory model support the
positive correlation of the expression patterns between mir-200a and
module 25 genes.
doi:10.1371/journal.pone.0010162.g004
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