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Differential gene expression governs the development, function and pathology of multicellular

organisms. Transcription regulatory networks study differential gene expression at a systems level

by mapping the interactions between regulatory proteins and target genes. While microarray

transcription profiles are the most abundant data for gene expression, it remains challenging to

correctly infer the underlying transcription regulatory networks. The reverse-engineering

algorithm LeMoNe (learning module networks) uses gene expression profiles to extract ensemble

transcription regulatory networks of coexpression modules and their prioritized regulators. Here

we apply LeMoNe to a compendium of microarray studies of the worm Caenorhabditis elegans.

We obtain 248 modules with a regulation program for 5020 genes and 426 regulators and a total

of 24 012 predicted transcription regulatory interactions. Through GO enrichment analysis,

comparison with the gene–gene association network WormNet and integration of other biological

data, we show that LeMoNe identifies functionally coherent coexpression modules and prioritizes

regulators that relate to similar biological processes as the module genes. Furthermore, we can

predict new functional relationships for uncharacterized genes and regulators. Based on modules

involved in molting, meiosis and oogenesis, ciliated sensory neurons and mitochondrial

metabolism, we illustrate the value of LeMoNe as a biological hypothesis generator for

differential gene expression in greater detail. In conclusion, through reverse-engineering of

C. elegans expression data, we obtained transcription regulatory networks that can provide

further insight into metazoan development.

Introduction

The availability of genome sequences for many organisms has
resulted in the development of genomic technologies, which
enable the study of molecular biology at a systems biology
level. Systems biology aims to obtain an integrative view of
biological processes by characterizing complex interactions in
an organism. While it remains experimentally challenging to
improve on high-throughput technologies for the mapping
of different biological molecules and their interactions, the
extraction of meaningful biological hypotheses out of the
numerous data continues to be the computational bottleneck.

To date, gene expression profiles are one of the most
abundant high-throughput sources of data. Several reverse-
engineering methods have been developed to extract transcription
hypotheses from microarray data.1–3 They model the data in
transcription regulatory networks that describe gene expression
at a systems level as a function of regulatory inputs specified
by interactions between regulatory proteins and DNA. The

basic assumption is that regulatory proteins are themselves
regulated by transcription, so that their expression profiles
provide information about their activity level.
Differential gene expression is an important driving force

in the development, function and pathology of eukaryotic
organisms. Most regulation of gene expression occurs at the
level of transcription, where specific transcription factors bind
DNA in order to activate or repress the expression of a gene.
Transcription is further influenced by protein–protein inter-
actions between transcription factors themselves or between
transcription factors and cofactors, chromatin modifying
factors or the basal transcription machinery.4 In addition,
signal transduction pathways can target all these regulatory
proteins, switching them ‘‘on’’ and ‘‘off’’ through phosphoryl-
ation by kinases or dephosphorylation by phosphatases.5

Hence, inferring transcription regulatory networks through
reverse-engineering of gene expression profiles should lead to a
better understanding of development in health and disease.
However, the noise inherent to high-throughput data, the

imbalance between the number of genes (variables) and the
number of experiments (data) and the fact that gene expression
profiles measure indirect regulator–gene interactions, all pose
difficulty for inferring biologically relevant transcription
regulatory interactions. In order to anticipate these complexities
in an intelligent way, we developed the LeMoNe (learning
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module networks) algorithm.6,7 LeMoNe is a probabilistic
module networks framework, like Genomica,3 in which
coregulated genes share the same parents and conditional
distributions in a Bayesian network, hence limiting the number
of variables, reducing the complexity of the learning and
leading to more robust solutions. Using Gibbs sampling,
LeMoNe groups genes in coexpression modules and then
using a fuzzy decision tree, it assigns regulators to these
gene modules, based on how well the regulators explain the
condition-dependent expression behavior of the module. To
filter out noise, LeMoNe extracts an ensemble solution from
many equiprobable solutions,6,8 both in the partitioning
of genes in modules and in the assignment of regulators.
Moreover, the algorithm ranks model predictions by providing
weights to the assigned regulators. Using benchmark expression
data we have shown that LeMoNe successfully prioritizes
known transcription regulatory interactions, reaching positive
predictive values of more than 90% in Escherichia coli and
more than 40% in Saccharomyces cerevisiae,9 and that it
significantly outperforms the original module network frame-
work Genomica.6 Providing the algorithm with a list of
candidate regulators that not only includes transcription
factors, but also chromatin modifiers, signal transducers and
other regulatory proteins, we take the indirect nature of inferred
interactions from gene expression profiles into account.

In this study, we infer transcription regulatory networks for
the worm Caenorhabditis elegans through LeMoNe. C. elegans
is one of the most widely used model organisms, due to its
biological simplicity and the advantages it offers in terms of its
transparent body, invariable cell number, small genome
size, rapid life cycle, mode of reproduction and ease of
maintenance.10 Worm research has already led to important
discoveries in diverse fields from development, signal trans-
duction, cell death and ageing to RNAi. While a genome-wide
collection of transcription regulatory interactions has been
reported for E. coli and S. cerevisiae,11,12 transcription
regulatory networks for metazoan organisms, including
C. elegans, have been mapped experimentally only to a limited
extent. In C. elegans, direct transcription factor regulatory
interaction networks have been identified through chromatin
immunoprecipitation,13,14 and yeast one-hybrid experiments,15–17

while indirect regulatory interaction networks have mainly
been identified through combinations of gene knockout or
knockdown and gene reporter, RT-PCR or microarray
experiments.18–21 In the latter case, cis-regulatory motif finding
algorithms have been applied in order to pinpoint the trans-
cription factors directly responsible for the change in gene
expression.22 Reverse-engineering could significantly increase
the knowledge on transcription regulatory networks inC. elegans
and put forward a set of interactions worth the experimental
time, cost and effort to validate them in vivo. To our
knowledge, the literature reports one probabilistic model
called TRANSMODIS, which integrates cis-regulatory
sequence and transcription factor perturbation expression
information in order to identify direct targets of the transcription
factor DAF-16 in C. elegans.23 Since the consensus binding
motif is only known for a few transcription factors
and perturbation microarray experiments are limited, this
algorithm is not yet applicable on a genome-wide scale.

We applied LeMoNe to a carefully preprocessed compendium

of C. elegans Affymetrix gene expression profiles. We verified

the coexpression modules for functional coherence by GO

enrichment and the presence of gene–gene associations from

WormNet.24 WormNet is a probabilistic functional gene

network of protein-encoding genes of C. elegans, constructed

using a modified Bayesian integration of many different data

types from several different organisms, with each data type

weighted according to how well it links genes that are known

to function together in C. elegans. Next, we compared the

predicted transcription regulatory interactions to a set of

known regulatory interactions in C. elegans,15,17,25,26 and

to the predicted interactions obtained by another reverse-

engineering method, the context likelihood of relatedness

(CLR) algorithm.2 CLR is a direct reverse-engineering method

that scores all possible pairwise regulator–target gene inter-

actions based on the mutual information of their expression

profiles as compared to an interaction specific background

distribution. Recently, we have observed that module-based

and direct reverse-engineering methods retrieve distinct parts

of underlying transcription regulatory networks.9 Furthermore,

we characterize some transcription regulatory networks that

are put forward by coexpression modules and their regulators

for which biologically functional information is available.

Overall, we demonstrate that LeMoNe is highly qualified to

generate biologically relevant hypotheses on transcription

regulatory networks in C. elegans.

Results and discussion

LeMoNe predicts functionally coherent coexpression modules

From the Affymetrix microarray compendium of 11 713 genes
and 155 conditions, LeMoNe consistently partitioned 5020
genes in 248 coexpression modules of at least three genes and a
regulation program. These modules contained on average
20 genes, ranging from three up to 203 genes. An overview
of the LeMoNe workflow and post-processing is depicted in
Fig. 1. Table 1 lists all modules for which there was a GO
enrichment and/or overlap with known and/or CLR predicted
regulatory interactions (see below).z
In order to assess the true biological nature of the modules,

we looked into the functional coherence of the modules.
Coexpressed and coregulated genes are more likely to function
in a similar biological process. First, we looked at the gene
ontology and found 72 modules with a significant GO biological
process enrichment. The actual number of functional coherent
modules may be considerably higher, since only about 40%
of C. elegans genes are annotated with a biological process
in WormBase (http://www.wormbase.org). In addition,
41 modules contained only three or four genes and those
received no GO enrichment, also because we required the
significant GO enriched biological process term to be attributed
to at least three genes in the module.

z The LeMoNe predicted modules with their genes and regulators are
available through a web interface at http://bioinformatics.psb.ugent.be/
supplementary_data/vamei/Celegans_lemone_clr. CLR predictions for
the genes in the modules can also be viewed.
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As a second, independent measure of functional coherence,
we evaluated whether the genes in a module shared functional
gene–gene associations reported in WormNet.24 WormNet
integrates diverse datasets from different organisms in a
gene–gene network, where tightly linked genes are very likely
to be involved in the same biological process. WormNet
comprises 384 700 linkages among 16 113 genes. Worm cDNA
coexpression data, human interologs and functional associa-
tions of yeast orthologs are the main data contributions to
WormNet. WormNet’s coexpression data are all obtained
from the Stanford Microarray Database, hence from cDNA
microarrays. In total, 161 LeMoNe modules contained genes
that are also connected to one another in WormNet, with 84
modules having 50% or more of the genes being linked in
WormNet, 37 of which also displayed a significant GO
enrichment.

When looking into detailed gene information for some of
the modules that did not have a significant GO enrichment, we
nevertheless observed that the genes are related to similar
biological processes (e.g. module 122 genes are active in the
germline and early embryogenesis; module 108 genes function
in ciliated sensory neurons, see below). Moreover, most modules
contain uncharacterized genes, for which based on the ‘‘guilt
by association’’ principle, we can now predict that they function
in a specific biological process. Hence, we can conclude that
LeMoNe correctly identified modules of genes that are
coexpressed over at least some of the conditions and that
function together in a specific biological process.

LeMoNe prioritizes biologically relevant regulators

For the assignment of regulators, LeMoNe used as an input
1063 candidate regulators with expression information in the
compendium. These were mostly worm transcription factors
(855),26 but also included proteins involved in signal transduction
(187) and chromatin modification (6) and proteins that have
been shown to bind DNA in yeast one-hybrid assays (15).15,17

Each of the 248 coexpression modules received on average
four predicted regulators with a weight of 100 or higher; only
one module had none and the maximum number of regulators

per module was eight. In total, 426 regulators were uniquely
assigned to coexpression modules, 49% of which were only
assigned to one module and less than one percent was assigned
to 10 modules or more. By relating all predicted regulators of a
module to all genes in that module, we ended up with 24 012
LeMoNe predicted interactions.
Next, we assessed to what extent a biologically relevant

regulation program or candidate regulator is inferred for a
module. We have previously shown that the score of a
regulator efficiently prioritizes interactions that have been
observed experimentally,9 and therefore high-scoring regulators
are more likely to be true regulators. This justifies the restriction
to those regulators having a weight of 100 or higher, which is
less than 1% of all regulators LeMoNe initially had assigned.
The top regulator of a module has on average a weight of 553.
A transcription regulatory interaction is also more plausible, if
the regulator is involved in a similar biological process as the
genes in the module. We could only investigate this for
modules and regulators that were sufficiently characterized
(see below).
In addition, we compared the predicted transcription

regulatory interactions from LeMoNe with a set of 1120
known regulatory interactions inC. elegans. These data consisted
of 598 yeast one-hybrid protein–DNA interactions,15,17,26 and
525 Wormbase WS195 regulatory interactions. The first are
direct regulator–target binding interactions, while for the latter
this is not necessarily the case. We found seven regulator–
gene interactions overlapping between both sets, respectively,
in modules 21, 29 and 34 (Table 2). Due to the limited
coverage of reported regulatory interactions, this low number
is not surprising. Modules 21, 29 and 34 are all related to
embryonic development, meiosis and oogenesis. In the
hermaphrodite C. elegans, oocyte maturation, ovulation,
fertilization and initiation of embryogenesis are tightly
coordinated.27 These modules also share regulators like the
homologs MEX-5 and MEX-6 and the homologs OMA-1
and OMA-2, which are involved in oogenesis and/or early
embryogenesis, indicating that these modules might be
coregulated (WormBase).28,29 Module 34 contains most
known regulatory interactions and is discussed in more detail
below. In addition, we observed a known regulatory inter-
action between genes in module 141. This could signify that
SEX-1, which is present as a gene in the module, is actually
regulating module 141. There is indeed extra evidence for this
hypothesis, since in addition to SEX-1 and DPY-27, proteins
functioning in sex determination and oviposition, this module
contains ALY-1, which is also involved in sex determination,
and R07E5.3, which is also involved in oviposition (WormBase).
Finally, three known regulatory interactions were found
between regulators only, for modules 56, 115 and 167. These
point to regulatory chains that are governing the regulatory
program of a module.
When looking into the known regulatory interaction list,

many genes that share a regulator ended up in the same
module, whether or not the regulator is predicted by LeMoNe
(see modules 34 and 108, and data not shown). In the case
where LeMoNe predicts a different regulator, there might exist
a ‘‘hidden path’’ that connects the predicted regulator to the
known regulator, since LeMoNe infers indirect regulatory

Fig. 1 Overview of the reverse-engineering of gene expression profiles

for C. elegans.
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Table 1 Summary of the modules for which there is a GO enrichment and/or overlap with known and/or CLR predicted regulatory interactionsa

M # Genes # Regs % WormNet GO enrichment Known CLR

1 203 7 65 Sensory perception of chemical stimulus, G-protein coupled receptor protein
signaling pathway

— —

2 83 6 26 Sensory perception of chemical stimulus, G-protein coupled receptor protein
signaling pathway

— —

3 88 6 42 Signal transduction Yes —
5 134 6 39 Protein amino acid glycosylation — —
6 70 7 50 Sensory perception of chemical stimulus — —
7 57 5 38 Sensory perception of chemical stimulus Yes —
8 52 4 5 G-protein coupled receptor protein signaling pathway — —
9 57 2 0 — Yes —
10 64 6 31 Negative regulation of vulval development — —
11 44 3 47 Phosphate metabolic process, post-translational protein modification,

protein amino acid (de)phosphorylation
— —

12 50 2 30 — Yes —
13 41 4 0 — Yes —
15 49 5 10 Response to DNA damage stimulus, meiosis, M phase of meiotic cell cycle,

response to stress
— —

16 93 6 47 Hermaphrodite genitalia development, RNA processing, growth,
cytoskeleton organization and biogenesis

— —

17 66 5 13 G-protein coupled receptor protein signaling pathway, ion transport Yes —
19 36 4 10 G-protein coupled receptor protein signaling pathway, locomotory behavior — —
20 34 5 80 Molting cycle, collagen and cuticulin-based cuticle — Yes
21 47 3 73 Meiosis, M phase of meiotic cell cycle Yes —
22 38 7 56 Embryonic development, growth, larval development, translation Yes —
23 58 4 17 Defecation, excretion, secretion — —
26 145 5 60 — — Yes
27 38 7 75 Proteolysis — —
28 34 4 100 Translation, growth, larval development, embryonic development,

reproduction
— —

29 40 6 89 Embryonic development Yes —
34 33 8 97 Meiosis, M phase of meiotic cell cycle, oogenesis, meiotic chromosome

segregation
Yes —

35 38 5 6 G-protein coupled receptor protein signaling pathway — —
36 65 6 42 Fatty acid metabolic process, monocarboxylic acid metabolic process — —
40 26 5 72 Protein amino acid dephosphorylation — —
41 36 6 40 Hermaphrodite genitalia development, sex differentiation, gastrulation with

mouth forming first, growth
— —

44 23 7 32 — Yes —
47 25 4 42 Translation — —
49 33 3 7 — Yes —
50 21 6 24 Regulation of transcription, DNA-dependent — —
52 28 4 0 — Yes —
53 48 4 63 Phosphate metabolic process, post-translational protein modification,

protein amino acid (de)phosphorylation
— —

55 23 3 18 — Yes —
56 20 5 0 — Yes —
57 26 6 21 Signal transduction — —
59 27 4 22 — Yes —
62 26 7 46 Embryonic development, growth — —
63 17 5 56 Oogenesis, hermaphrodite genitalia development, sexual differentiation — —
64 21 6 95 Locomotion, molting cycle, collagen and cuticulin-based cuticle Yes —
65 30 8 9 G-protein coupled receptor protein signaling pathway Yes —
67 19 3 88 Embryonic development, larval development, growth, biopolymer catabolic

process
— —

68 24 6 35 — Yes —
71 22 4 55 Macromolecule biosynthetic process — —
75 15 4 29 Post-translational protein modification, phosphate metabolic process — —
77 20 5 35 — Yes —
79 20 3 25 Vesicle-mediated transport — —
81 15 5 50 Transcription, growth, hermaphrodite genitalia development — —
83 15 6 0 — Yes —
86 18 4 100 Translation, growth, larval development, embryonic development,

reproduction
— —

88 34 5 22 Aromatic compound metabolic process Yes —
89 20 5 33 Regulation of transcription, DNA-dependent Yes —
91 14 6 92 Molting cycle, collagen and cuticulin-based cuticle, locomotion,

body morphogenesis
— —

92 15 1 73 Larval development, growth, embryonic development, reproduction — —
95 19 5 12 Embryonic development — —
96 19 3 12 Neurological system process, ion transport — —
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Table 1 (continued )

M # Genes # Regs % WormNet GO enrichment Known CLR

97 21 3 95 Proteolysis, cell death — —
100 21 4 0 — — Yes
101 39 4 63 Growth, larval development, electron transport chain — —
105 40 4 36 Meiotic chromosome segregation, M phase of meiotic cell cycle — —
106 16 4 44 Metabolic process — —
108 15 7 0 — Yes —
109 14 3 0 Growth, locomotion — —
113 19 4 47 Amino acid and derivative metabolic process — —
115 11 4 0 — Yes —
117 14 4 0 — Yes —
124 12 3 75 Cytoskeleton organization, cell cycle, growth — —
125 26 3 17 Regulation of transcription, DNA-dependent — —
126 15 5 93 Translation, growth, larval development — —
128 22 2 24 Energy derivation by oxidation of organic compounds, generation of

precursor metabolites and energy, growth
— —

130 17 3 12 Determination of adult life span, aging — —
133 12 2 56 Molting cycle, collagen and cuticulin-based cuticle — —
135 14 5 62 Nitrogen compound metabolic process, carboxylic acid metabolic process,

lipid metabolic process
— —

137 14 3 54 Generation of precursor metabolites and energy, oxidative phosphorylation,
growth

— —

140 11 5 89 Ubiquitin-dependent protein catabolic process, proteolysis — —
141 11 7 50 Oviposition Yes —
142 9 2 67 Generation of precursor metabolites and energy, positive regulation of growth,

ion transport
— —

148 12 2 100 Translation, growth, larval development, embryonic development,
reproduction

— —

150 22 3 33 Metabolic process — —
152 22 4 55 Regulation of vulval development, growth, larval development, embryonic

development
— —

161 6 4 100 Translation, growth, larval development, embryonic development,
reproduction

— —

167 7 3 0 — Yes —
171 6 3 80 Locomotion — —
172 9 5 100 Cytokinesis, hermaphrodite genitalia development, sex differentiation — —
188 5 2 80 Nucleosome assembly, chromatin assembly or disassembly, chromosome

organization and biogenesis
— —

203 7 4 57 Growth — —
221 5 5 50 Anatomical structure development — —
265 5 2 75 Regulation of transcription, DNA-dependent — —
288 3 2 67 — — Yes
315 5 5 0 — Yes —

a The module number (M), the number of genes (# Genes), the number of regulators (# Regs), the percentage of genes that are connected with one
another in WormNet (%WormNet), the most significant GO biological process terms (GO enrichment), overlap with known or derived regulatory
interactions (Known) and overlap with CLR predictions (CLR) are given. The modules that are discussed in more detail are in bold.

Table 2 Overlap between LeMoNe predictions and reported regulatory interactions in C. elegans (either yeast one-hybrid protein–DNA
interactions (PDI) or WormBase WS195 regulatory interactions (RI))a

Type M Regulator Target Type
Regulator in
module? W1 W2 R1 R2

REG–GENE 21 MEX-6 CDC-25.1 RI No 630 — 2 —
REG–GENE 29 OMA-2 MEX-1 RI No 349 — 3 —
REG–GENE 34 OMA-1 PGL-1 RI Yes 161 — 6 —
REG–GENE 34 OMA-1 MEX-5 RI Yes 161 — 6 —
REG–GENE 34 OMA-1 PIE-1 RI Yes 161 — 6 —
REG–GENE 34 OMA-2 PGL-1 RI Yes 312 — 3 —
REG–GENE 34 OMA-2 PIE-1 RI Yes 312 — 3 —
GENE–GENE 141 SEX-1 DPY-27 RI Yes — — — —
REG–REG 56 FOS-1 EGL-43 RI No 262 104 2 5
REG–REG 115 CEH-8 UNC-42 PDI No 130 576 4 1
REG–REG 167 OMA-1 POS-1 RI No 122 229 3 1

a The regulatory interaction was either between a predicted regulator and a module gene (REG–GENE), between two genes in the module, one of
them being a regulator (GENE–GENE), or between two predicted regulators, one of them regulating the other (REG–REG). M = module
number; W1, R1 are, respectively, weight and rank of regulator, if regulator was predicted as regulator by LeMoNe; W2, R2 are, respectively,
weight and rank of target, if target was predicted as regulator by LeMoNe.
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interactions and this does not necessarily implicate direct
binding between regulator and target gene. Therefore, we
decided to do a more thorough comparison by calculating
all possible indirect paths between regulators and target genes
from the reported set of C. elegans regulatory interactions. We
retrieved 9614 derived regulatory interactions (see Methods).
Comparing this dataset to the LeMoNe predictions revealed
an additional overlap of 28 regulator–gene, five gene–gene and
eight regulator–regulator interactions (Table 3). Based on this,
we could infer a whole regulatory path for a module and relate
more regulators to the module genes. For example, for module
49, two possible regulatory paths between the regulator
LIN-54 and the target gene ZAG-1 are one involving the
regulators ZTF-4, RNT-1 and TLP-1, and the other involving
the regulators TTX-1 and ODR-7. We characterize the
regulatory paths for module 108 in more detail below. There
might be several explanations why LeMoNe did not predict

the regulators of the hidden path, e.g. they might have
low expression variation over the conditions and diverse
biological functions or they might be regulated at the post-
transcriptional level. Overall, many modules contained known
or derived regulatory interactions (Table 1).

Comparison with CLR, another reverse-engineering method

We also predicted transcription regulatory interactions for
C. elegans on the Affymetrix microarray compendium by
means of another reverse-engineering method, CLR.2 CLR
prioritizes regulator–gene interactions using a z-score. With a
z-score cut-off of five (p-valueo 3" 10#7), CLR inferred 14503
transcription regulatory interactions for C. elegans, between
4048 genes and 583 regulators. We did not find any overlap
between CLR and the set of known regulatory interactions.
We have previously observed that CLR and LeMoNe infer

mainly different parts of the underlying transcription

Table 3 Overlap between LeMoNe predictions and derived interactions from reported regulatory interactions in C. elegans (see Methods)a

Type M Regulator Target
Regulator in
module? W1 W2 R1 R2

REG–GENE 7 TBX-35 EXP-1 No 526 — 2 —
REG–GENE 9 SEM-4 LIN-11 No 210 — 2 —
REG–GENE 12 SEM-4 NRX-1 Yes 156 — 2 —
REG–GENE 13 SEM-4 MAB-9 No 112 — 4 —
REG–GENE 17 ZTF-8 GCY-22 No 107 — 5 —
REG–GENE 22 UNC-120 XBX-6 No 120 — 6 —
REG–GENE 22 ZTF-8 XBX-6 No 149 — 4 —
REG–GENE 49 LIN-54 ZAG-1 No 362 — 2 —
REG–GENE 52 ALR-1 T22C8.3 No 206 — 2 —
REG–GENE 55 SEM-4 EFF-1 No 1044 — 1 —
REG–GENE 57 ALR-1 SYD-2 No 175 — 5 —
REG–GENE 57 CEH-20 SYD-2 No 237 — 2 —
REG–GENE 57 AST-1 SYD-2 No 205 — 4 —
REG–GENE 59 TAG-233 DAF-19 Yes 113 — 4 —
REG—GENE 65 ZTF-2 CHE-12 No 144 — 6 —
REG–GENE 65 UNC-42 CHE-12 No 247 — 3 —
REG–GENE 68 CEH-20 LIT-1 No 436 — 2 —
REG–GENE 77 DMD-4 SOD-3 No 149 — 3 —
REG–GENE 88 ZC204.12 MDL-1 No 123 — 3 —
REG–GENE 89 TTX-1 ZIG-4 Yes 162 — 4 —
REG–GENE 89 AST-1 ZIG-4 No 210 — 3 —
REG–GENE 108 LIN-11 BBS-5 No 145 — 4 —
REG–GENE 108 UNC-42 BBS-5 No 388 — 1 —
REG–GENE 108 LIN-11 DYF-11 No 145 — 4 —
REG–GENE 108 UNC-42 DYF-11 No 388 — 1 —
REG–GENE 117 UNC-42 CEH-2 No 465 — 2 —
REG–GENE 117 UNC-42 CHE-11 No 465 — 2 —
REG–GENE 167 OMA-1 NHR-79 No 122 — 3 —
GENE–GENE 44 ZTF-19 PHA-4 Yes — — — —
GENE–GENE 59 ZTF-12 DAF-19 Yes — — — —
GENE–GENE 89 LIN-39 SYG-2 Yes — — — —
GENE–GENE 89 LIN-39 ZIG-4 Yes — — — —
GENE–GENE 89 MAB-5 ZIG-4 Yes — — — —
REG–REG 3 TBX-35 CHE-1 No 276 294 4 3
REG–REG 52 ALR-1 AST-1 No 206 169 2 4
REG–REG 57 ALR-1 AST-1 No 175 205 5 4
REG–REG 57 CEH-20 AST-1 No 237 205 2 4
REG–REG 64 SEM-4 UNC-86 No 131 105 4 5
REG–REG 83 ZTF-1 NHR-68 No 139 104 3 6
REG–REG 108 LIN-11 UNC-42 No 145 388 4 1
REG–REG 315 AST-1 UNC-30 No 308 108 2 5

a The regulatory interaction was either between a predicted regulator and a module gene (REG–GENE), between two genes in the module, one of
them being a regulator (GENE–GENE), or between two predicted regulators, one of them regulating the other (REG–REG). M = module
number; W1, R1 are, respectively, weight and rank of regulator, if regulator was predicted as regulator by LeMoNe; W2, R2 are, respectively,
weight and rank of target, if target was predicted as regulator by LeMoNe.
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regulatory networks of E. coli and S. cerevisiae.9 While CLR
makes predictions for a higher number of regulators (more
target gene hubs), LeMoNe predicts more target genes
for fewer regulators (more regulator hubs). The advantage
of LeMoNe over CLR is that a predicted transcription
regulatory interaction can be directly related to a biological
process through the module context. While they are highly
complementary, this also indicates that interactions predicted
by both methods are of great value.9 For the genes in LeMoNe
modules, CLR predicted 6602 interactions.z When comparing
CLR to LeMoNe, we observed 15 predicted regulator–gene
interactions in common (Table 4). Especially for module 20
and module 100, CLR predicted interactions between many
genes in the module and, respectively, the second-best and best
regulator of that module. Module 20 is discussed in more
detail below. In addition, we observed several modules that
illustrate the complementariness of LeMoNe and CLR (see
modules 108 and 142 below).

We discuss four modules in greater detail: module 20, for
which we observed a high overlap between LeMoNe and CLR
(Table 4); module 34, for which we retrieved many reported
regulatory interactions (Table 2); module 108, for which we
found reported hidden regulatory paths (Table 3) and module
142. For all these modules external evidence further supports
the fact that the predicted regulator(s) and the module genes
function in a similar biological process.

Molting and larval development

Module 20 (34 genes) contains several genes involved in
molting (ACN-1, BUS-8, PTR-1 and T19A5.3), which is the
process of shedding of C. elegans’ extracellular matrix, the
cuticle, at each larval stage (Fig. 2). PTR-1 is a sterol-sensing
domain protein. In addition, the module contains BE10.2,
belonging to the KOG group of sterol C5 desaturase (NCBI)
and involved in fatty acid biosynthesis; ELO-4, a poly-
unsaturated fatty acid elongase; and CLEC-180, a C-type
lectin belonging to the KOG group of low-density lipoprotein
receptors. This is in agreement with the fact that most likely
a steroid hormone triggers molting, since this process
requires cholesterol, the biosynthetic precursor of all steroid

hormones.30 Many genes in module 20 have not yet been
characterized, but based on their association with the genes
above for which functional information is available, we can
hypothesize that they also function in molting. All genes in the
module are downregulated in embryos and adults, while they
are upregulated during larval development, in accordance with
the timing of molting. C12D12.5, which is predicted as a
regulator for nine genes in this module by CLR and as the
second-best regulator for this module by LeMoNe, is an
uncharacterized HMG transcription factor (WormBase).
From the predictions of LeMoNe and CLR, we can postulate
that this transcription factor functions during larval development
and is implicated in the molting cycle. Module 20 has several
other regulators, which also might be active in these processes
(WormBase). The top regulator RAB-3 is a RAS small
GTPase signal transducer, which is expressed in all neurons
and connected to many biological processes, especially synaptic
transmission, chemotaxis, locomotion, pharyngeal pumping
and mating behavior. The third regulator ZBED-6 is required
for larval development and growth and is involved in the
molting cycle. The fourth regulator F17A9.3 is reported to be
expressed during larval development. For the fifth regulator
NHR-230 there is not much biological information available
and its expression profiles do not correspond so well with
those of the module genes. Interestingly, we found some of
these regulators back in other modules that were GO enriched
in the molting cycle. ZBED-6 was predicted as the second
regulator both in module 64 and module 133. Members of the
RAS small GTPase family were also predicted as regulators in
module 91 and module 133. Finally, F17A9.3 was the best
regulator for module 91. This again suggests some coregulation
for modules involved in a similar biological process.

Meiosis and oogenesis

Module 34 (33 genes) is GO enriched for the M phase of the
meiotic cell cycle, cell division, oogenesis and cell differentiation,
in addition to embryonic development (Fig. 3). In the
hermaphrodite C. elegans, the germline produces both male
and female gametes, sperm and oocytes, respectively. While
oocytes are produced throughout adult life, sperm is generated

Table 4 Overlap between LeMoNe predictions and CLR predictions in C. elegansa

M Regulator Target
Regulator in
module? Weight Rank z-score

20 C12D12.5 T03G6.1 No 392 2 6.17
20 C12D12.5 K04H4.2 No 392 2 6.07
20 C12D12.5 BE10.2 No 392 2 6.04
20 C12D12.5 K10D3.4 No 392 2 5.48
20 C12D12.5 C15C6.1 No 392 2 5.36
20 C12D12.5 Y64H9A.2 No 392 2 5.10
20 C12D12.5 W04G3.1 No 392 2 5.06
20 C12D12.5 T19A5.3 No 392 2 5.03
20 C12D12.5 C14A4.9 No 392 2 5.01
26 C04F5.9 C32D5.11 No 131 5 5.37
100 2L52.1 Y95B8A.8 Yes 658 1 5.91
100 2L52.1 Y39G10AR.11 Yes 658 1 5.60
100 2L52.1 Y71G12B.13 Yes 658 1 5.42
100 2L52.1 Y53F4B.13 Yes 658 1 5.01
288 M18.8 F48C1.5 No 405 1 5.36

a All are regulator–gene interactions. M = module number.
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during the last larval stage. The adult germline exhibits distal–
proximal polarity with a mitotic cell population located at
the most distal end of the gonad, meiotic cells extending
proximally and formation of sperm and oocytes occurring in
the proximal part of the gonad arm. This is followed, both in
time and space, by oocyte maturation, ovulation, fertilization and
initiation of embryogenesis (Wormatlas, www.wormatlas.org).
Hence, meiosis, oogenesis and embryogenesis are tightly
coupled processes in worms.27 The majority of the genes in
this module are expressed in the medial germline, where
meiosis takes place (WormBase) (Fig. 3). In addition, most
genes were reported to be ‘‘oogenesis-enriched’’ according to a
C. elegans genome-wide analysis of gene expression to identify
germline- and sex-regulated genes.31 Genes with high expression
during oogenesis are either genes required for oocyte
differentiation or maternal mRNAs required for early embryo-
genesis. Several genes that encode maternal mRNAs are
present in the module: mex-5, mex-6, pie-1, cey-3, oma-1 and
oma-2. They appear to be under translational control and play
a significant role in establishing soma–germline asymmetry in
the early embryo.28 PUF domain RNA binding proteins like
PUF-5, which are also in the module, have been reported to
control maternal mRNAs during late oogenesis.32 This
module contains the highest number of regulators and over-
lapping interactions with C. elegans known as regulatory
interactions (Table 2). The known regulatory interactions are
derived from the observation that oma-1;oma-2 RNAi
embryos have missegregation of PGL-1, PIE-1 and MEX-1
in the early embryo,33 and that a gain-of-function oma-1

mutant has delayed degradation of maternal proteins including
SKN-1, PIE-1, MEX-3 and MEX-5.34 From the information
we currently have, the most likely regulators of the module are
OMA-1 and its paralog OMA-2, which have a reported
function in oocyte maturation,35 and ZIM-2, which is required
for segregation of chromosomes during meiosis;36 both are
processes that are in accordance with the GO enrichment of
the module genes.

Ciliated sensory neurons

Despite the absence of a significant GO enrichment, several
genes in module 108 are reported to be expressed and function
in ciliated sensory neurons (WormBase) (Fig. 4). In addition,
most genes and regulators of module 108 are upregulated
during neuronal conditions (Fig. 4). In this module we found
five derived interactions back from reported C. elegans
regulatory interactions (Table 3). The proteins BBS-5 and
DYF-11 in module 108 are both expressed in all ciliated
sensory neurons and share the regulators UNC-42 and
LIN-11, which are both transcription factors that function in
cell fate determination of sensory neurons (WormBase).
LIN-11 is regulating UNC-42 through a path consisting of a
regulatory interaction and a protein–DNA interaction involving
ODR-7, another transcription factor implicated in sensory
neuron cell fate determination (WormBase) (Table 3)
(Fig. 5). The expression of BBS-5 and DYF-11 is known to
be regulated by DAF-19, an RFX transcription factor that is
required for sensory neuron cilium formation (WormBase)

Fig. 2 Predicted regulators and module genes for module 20, which is involved in molting. Red vertical lines partition the different condition

clusters. Yellow: upregulated genes; blue: downregulated genes.
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(Fig. 5). Through yeast one-hybrid protein–DNA interaction
data we can infer a regulatory path between UNC-42, and
hence also LIN-11, and DAF-19 through DAF-3, which is
also expressed in sensory neurons (WormBase) (Fig. 5). The
characterized paths and the correspondence of the biological
function of the transcription factors with that of the module

genes further testify the LeMoNe predictions. CLR predicts
ODR-3, a G protein a-subunit that also functions in cilium
morphogenesis of sensory neurons, as a regulator for seven
out of the 15 genes in module 108, including bbs-5 and dyf-11
(Fig. 5). Interestingly, there is a hidden known regulatory path
that connects ODR-3 to these two genes (Fig. 5). Although

Fig. 3 Predicted regulators and module genes for module 34, which is involved in meiosis and oogenesis. Red vertical lines partition the different

condition clusters. Yellow: upregulated genes; blue: downregulated genes.

Fig. 4 Predicted regulators and module genes for module 108, which is related to ciliated sensory neurons. Red vertical lines partition the different

condition clusters. Yellow: upregulated genes; blue: downregulated genes.
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LeMoNe and CLR predict different regulators for this
module, biological functional information and reported
regulatory interactions provide evidence for both predictions.
This illustrates once more that LeMoNe and CLR can recover

different parts of the underlying transcription regulatory
networks. 9

Energy metabolism, oxidative stress and life span

Module 142 (9 genes) is GO enriched for energy metabolism,
growth and ion transport. From the genes in the module we
deduced that it is related to the mitochondrial respiratory
electron transport chain (Fig. 6). It contains a mitochondrial
phosphate carrier protein (F01G4.6), a subunit of cytochrome
C oxidase (F26E4.6), two subunits of ATP synthase (F58F12.1
and H28O16.1) and a voltage-gated anion channel in the
mitochondrial outer membrane (R05G6.7). Another component
involved in respiration is F01F1.12, a fructose biphosphate
aldolase, an enzyme in the glycolysis pathway. Energy sources
such as glucose are initially metabolized in the cytoplasm,
but then products are imported in the mitochondria where
catabolism continues to form energy-rich electron donors.37 In
the mitochondrial electron transport chain the electrons are
transferred to the terminal electron acceptor oxygen via a
series of redox reactions. These reactions are coupled to the
creation of a proton gradient across the mitochondrial inner
membrane, which is used to make ATP via ATP synthase.
Although electron transport occurs with great efficiency, a
small percentage of electrons are prematurely leaked to
oxygen, resulting in the formation of toxic reactive oxygen
species like superoxide and hydrogen peroxide. In this respect,
another gene in the module, prdx-2 encodes a peroxidase that
reduces hydrogen peroxide and increases the resistance to
oxidative stress.38 Knockout experiments have shown that this
gene is also involved in the negative regulation of transcription
(WormBase). This provides a relation with the last two genes
in this module, R09B3.3, which is involved in RNA processing,
and RLA-2, which is a large ribosomal subunit. In addition,
these two genes might have yet unknown functional roles in
mitochondrial homeostasis.
Moreover, five genes in this module (F01G4.6, H28O16.1,

prdx-2, R05G6.7, rla-2) have an expression pattern in pharynx,
intestine and/or body wall muscle, tissues with high metabolic
rates that contain many mitochondria (WormBase).37 From
the partition of experiments, we observed major differences in
gene expression between the conditions of experiment 6 and

Fig. 5 The transcription regulatory network for module 108, an

example where LeMoNe predictions (yellow boxes, dashed lines) are

supported by a combination of reported yeast one-hybrid protein–

DNA (PDI) and regulatory interactions (RI) (solid lines). UNC-42

and LIN-11 are predicted regulators of module 108. Two genes in this

module, bbs-5 and dyf-11, are reported to be regulated by DAF-19

(WormBase), whose promoter is bound by DAF-3 in yeast one-hybrid

assays, which in turn is a direct target for UNC-42 in yeast one-hybrid

assays.17 UNC-42 is bound by ODR-7, 17 which is regulated by LIN-11

(WormBase). CLR predicts ODR-3 as regulator for several genes in

module 108 (dashed-dotted line). ODR-3 can also be connected to

bbs-5 and dyf-11 through a combination of reported interactions.

Fig. 6 Predicted regulators and module genes for module 142, which is involved in energy metabolism, growth and ion transport. Red vertical

lines partition the different condition clusters. Yellow: upregulated genes; blue: downregulated genes.

1826 | Mol. BioSyst., 2009, 5, 1817–1830 This journal is !c The Royal Society of Chemistry 2009



experiment 20. In experiment 6, the terminally differentiated
glp-1 mutated embryos, young adults and old adults are
present in different experiment clusters, with a higher expression
of the module genes in younger animals. This is in accordance
with the reported age-related decreased metabolism,
mitochondrial function and ATP production.39,40 In
experiment 20, the module genes are significantly more
upregulated in daf-2;daf-16 mutants than in daf-2 mutants
(Fig. 6). daf-2;daf-16 mutants have a decreased, normalized
life span and a higher nutrient uptake and metabolism than
the life-span-extended, hypo-metabolic daf-2 mutants, which
is also in agreement with the biological functions of the
module genes.41

The top regulator of this module, CST-1, has a weight six
times higher than the second regulator. Interestingly, its
expression profiles are anticorrelated compared to the expression
profiles of the genes in the module. CST-1 is a member of the
STE20-like kinase family, which is known to mediate cell
death triggered by oxidative stress in yeast and mammals.42,43

In primary mammalian neurons, MST-1 mediates oxidative-
stress-induced cell death by phosphorylating FOXO transcription
factors, thereby disrupting their interaction with 14-3-3
proteins, promoting FOXO nuclear translocation and cell
death.43 Apparently, the interaction between STE20-like
kinases and FOXO transcription factors upon oxidative stress
is evolutionary conserved, since in C. elegans, CST-1 knock-
down shortens life span and accelerates tissue aging through
the forkhead transcription factor DAF-16.43 Since mitochondria
play an important role in the combat of oxidative stress and
cell death,37 both regulator and module genes seem to be
involved in similar biological processes. Three genes in the
module have been implicated in the determination of adult life
span: while the knockdown of F26E4.6 and H28O16.1 both
led to an extended life span, PRDX-2 knockdown reduced the
life span of the organism. The genes in module 142 might also
be targeted by DAF-16 and this is further supported by the
different experiment partitions of experiment 20 daf-2;daf-16
and daf-2 mutants (Fig. 6). Except for rla-2, whose expression
pattern is also the least coherent of the module, all 50 inter-
genic sequences of the module genes contained the DAF-16
consensus binding element (data not shown), which has been
shown to bind DAF-16 in vitro and to be present in many
DAF-16 regulated genes.44,45 All 50 intergenic sequences
included the DAF-16 associated element (data not shown),
which is suggested to be an aging associated promoter element
and to lead to DAF-16 dependent downregulation of
transcription.41,45 The predicted transcription regulatory
program of module 142 is that CST-1 activates DAF-16,
which regulates the module genes (Fig. 7). DAF-16 is not
predicted as a regulator by LeMoNe, because its expression
profiles do not correspond to those of the module genes (data
not shown), which can be explained by the fact that this
transcription factor is broadly expressed and is involved in
many biological processes (WormBase). Interestingly, CLR
predicts DAF-3 as a regulator for four of the module genes
and for three of the genes in module 137, a module that is also
GO enriched for energy metabolism and growth. LeMoNe
predicts three regulators for this module, but only the third
regulator Y17G7B.20, which positively affects growth, has a

clear biological relation with the module genes. DAF-3
positively regulates daf-16 in the C. elegans TGF-b dauer
pathway, which controls longevity through insulin signaling.46

In addition, in yeast one-hybrid assays DAF-16 binds the
daf-3 promoter, hinting at a feedback control mechanism.17

This demonstrates again the complementariness of LeMoNe
and CLR (Fig. 7). Module 142 may be part of the emerging
picture that insulin-like molecules, through the activity of the
DAF-2/insulin/IGF-I-like receptor, and the DAF-16/FKHRL1/
FOXO transcription factor, control the ability of the organism
to deal with oxidative stress, and interfere with metabolic
programs that help to determine life span.47

Conclusion

At a time when functional genomics data are increasing
tremendously, reverse-engineering methods are gaining more
and more importance. Such biological network inference
methods are the interface between high- and low-throughput
experiments, providing a means to bring structure and
integration to data abundance, while putting forward selected
follow-up experiments for experimental validation of hypotheses.
In this study we have demonstrated that LeMoNe is a
highly qualified reverse-engineering algorithm and capable of
providing hypotheses on differential gene expression through
inference of transcription regulatory networks from gene
expression profiles.

Methods

Preprocessing of microarray data

Affymetrix expression profile data were assembled from
ArrayExpress, GEO (gene expression omnibus) and through
personal communications. We avoided the combination of
different microarray platform data, since this could lead to

Fig. 7 The transcription regulatory network for module 142. The

kinase CST-1 is predicted as top regulator. Experimental conditions

in the condition clusters, external biological data and a reported

regulatory interaction (RI) point to DAF-16 as intermediate trans-

cription regulator. CLR predicted, reported regulatory (RI) and yeast

one-hybrid (Y1H) interactions indicate that DAF-3 could also play a

role in the path from CST-1 to the module genes.
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erroneous conclusions. We gathered raw data (CEL files)
for 26 experimental series, representing 489 arrays and 155
different conditions (Table 5). After preprocessing the micro-
array data in Bioconductor, R, with the robust multi-array
average (RMA) method, a background-adjusted, normalized
and summarized log-transformed expression value was obtained
for each C. elegans probe set. An Affymetrix probe set is a
set of 25-mer oligonucleotides (probes) whose sequence is
designed to be complementary to the intended target gene.
The probe set compositions in the Affymetrix chip description
files (cdf) are considered static and do not take into account
the continuously expanding knowledge about the transcriptome.
A major concern is off-target hybridization, where probes
target either a different gene than originally described, or
target multiple genes.48 Therefore, based on WS180, we
created a custom C. elegans cdf file from the Affymetrix
C. elegans cdf file that consisted of 16 723 probe sets of at
least nine probes, each targeting with perfect sequence identity
to its transcript and not aligning to any other gene’s transcript
with zero or one mismatch. In addition, we removed 5010
genes that showed no differential gene expression over all
conditions (standard deviation lower than 0.5).

The public gene names in this paper are in accordance with
WormBase version WS195.

LeMoNe analysis

We obtained a C. elegans gene expression profile
compendium consisting of average expression values for
11 713 genes and 155 conditions. We used 1063 candidate
regulators as input for LeMoNe (software available at

http://bioinformatics.psb.ugent.be/software/details/LeMoNe),
mostly worm transcription factors (wTF2.126) (855), but also
proteins with GO annotations ‘‘signal transduction’’, ‘‘regulation
of signal transduction’’ (187) and ‘‘chromatin modification’’
(6) and novel proteins that were found to bind DNA in yeast
one-hybrid assays (15),15,17 and that were present on the
original Affymetrix microarray compendium. We ran 20
independent Gibbs sampler LeMoNe runs, generating 20 local
optima module cluster solutions, from which an ensemble-
averaged solution of coexpression modules was created.8 We
obtained 248 module clusters containing three or more genes.
The program assigns each gene to only one cluster. Only
C08E8.4 is present in two clusters, since compared to
WormBase WS180, two genes merged into one in WS195.
Next, LeMoNe predicted a ranked list of weighted regulators
for each module, based on an ensemble of 10 regulatory
program trees built using significant experiment sets found
from 10 different experiment partitions and significant regulators
sampled from 100 candidate regulator-split value pairs for
each split between significant experiment clusters (see ref. 6 for
more details on LeMoNe). The weight of a regulator is the
sum of split scores over the different regulatory programs (10),
for each regulator sampled (100) and for each level in the tree,
taking into account the proportion of conditions covered.
The split score (0–1) of a regulator indicates how well the
expression-split value of the regulator explains the partition in
conditions in the module. Theoretically, if for a specific
module with for instance a regulatory tree of depth five, the
same regulator has a perfect split score at all tree nodes and
would be sampled at all instances, the maximum score would

Table 5 Affymetrix microarray studies compiled in this study. Ref. = bibliographic reference

Description Database Database ID Ref.

1 Microarray-assisted positional cloning of TOM-1 and UNC-43 GEO GSE2210 50
2 Lineage-specific regulatory network specified by PAL-1 GEO GSE2180 51
3 The embryonic muscle transcriptome of C. elegans GEO GSE8462 52
4 Gene expression profiling of the C. elegans nervous system GEO GSE8004 53
5 A gene expression fingerprint of C. elegans embryonic motor neurons GEO GSE8159 54
6 Decline of nucleotide excision repair capacity in aged C. elegans GEO GSE4766 40
7 Developmental transcriptome profiling of the C. elegans pocket protein ortholog, lin-37 GEO GSE6547 55
8 C. elegans gene expression in response to the pathogenic P. aeruginosa strain PA14 GEO GSE5793 56
9 Genes regulated by PMK-1 and DAF-16 in a daf-2(e1368) background GEO GSE5801 56
10 Analysis of expression of genes regulated by DAF-19 GEO GSE6563 57
11 Transcription profiling of the C. elegans RNAi defective mutants of rde-1 and rde-5 ArrayExpress E-MEXP-956 58
12 Transcription profiling of C. elegans dcr-1, unc-32 homozygous mutants vs. coiling

unc-32 to investigate interference synthesis of small developmental RNAs
ArrayExpress E-MEXP-957 58

13 Transcription profiling of C. elegans sma-9 and dbl-1 gene knockouts ArrayExpress E-MEXP-687 59
14 Transcription profiling of C. elegans after infection with Microbacterium nematophilum ArrayExpress E-MEXP-696 60
15 Expression profiling of single neuron types From author — 61
16 Translation of a small subset of C. elegans mRNAs is dependent on a specific eukaryotic

translation initiation factor 4E isoform
From author — 62

17 Interacting endogenous and exogenous RNAi pathways in C. elegans From author — 63
18 Monomethyl branched-chain fatty acids From author — 64
19 Unfolded protein response in C. elegans From author — 65
20 C. elegans dauer larvae and long-lived daf-2 mutants From author — 41
21 Heme homeostasis is regulated by the conserved and concerted functions of HRG-1

proteins
GEO GSE8696 66

22 Transcriptome profiling of slr-2, C. elegans C2H2 Zn-finger GEO GSE9246 67
23 Expression data from wildtype and gas-1 mitochondrial mutant C. elegans GEO GSE9896 68
24 Pairing competitive and topologically distinct regulatory modules enhances patterned

gene expression
GEO GSE9665 21

25 cRNA amplification methods enhance microarray identification of transcripts expressed
in the nervous system

GEO GSE9485 —

26 SKN-1-dependent oxidative stress response in C. elegans GEO GSE9301 —
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be 1 " 100 " 5 " 10 = 5000. In general, due to the stochastic
nature of the sampling and the imperfect split scores of most
regulators, almost all tree nodes have multiple regulators
assigned to them, especially at the lower levels in the regulatory
tree, and the theoretical maximum score is never reached. We
obtained a maximum score of 1224 for the topregulator SEX-1
in module 116 with a regulatory tree of five levels. We only
considered regulators having a weight of 100 or higher (0.87%
of all regulators assigned), resulting in on average four
regulators per module and a total of 24 012 predicted
regulatory interactions. The weights of the regulators are
comparable between the different modules.

Functional analysis on modules

The genes in each module were analyzed for GO enrichment
with BiNGO,49 using a custom annotation file with biological
process annotations from Wormbase WS195 and a hyper-
geometric test, false discovery rate corrected for multiple
testing with a confidence level of 95%. We kept the significant
GO enrichment only if more than two genes in the module
had the GO biological process annotation. In addition, the
functional coherence of genes in the modules was independently
assessed by identifying the percentage of genes in the module
that shared functional gene–gene links in WormNet.24

WormNet’s coexpression data are all obtained from the Stanford
Microarray Database, hence from cDNA microarrays.

CLR analysis

To the same microarray compendium we also applied CLR,2

(software available at http://gardnerlab.bu.edu/clr.html). We
retrieved mutual information z-scores for target gene inter-
actions with all 1063 regulators. With a cut-off for the z-score
at 5 (p-value o 3 " 10#7), we obtained a total of 14 503
predicted regulatory interactions.

Reported regulatory interactions

We compared the predicted transcription regulatory inter-
actions with 10 734 non-autoregulatory known regulatory
interactions in C. elegans, consisting of 598 yeast one-hybrid
protein–DNA interactions,15,17,26 525 Wormbase WS195
regulatory interactions (mostly regulator knockdown/knockout
and target gene expression monitoring) and 9614 derived
regulatory interactions from these two sets. We derived a
regulatory interaction between protein A and target gene B
if there was a path present through a combination of reported
protein–DNA interactions and regulatory interactions from A
to B, e.g. A binds C, C regulates D, D binds E and E regulates
B. So the derived regulatory interactions are the ‘‘hidden’’
interactions present in the known yeast one-hybrid and
regulatory interaction datasets.
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